Abgeschlossene Forschungsprojekte

Satellitengravimetrie

  • Multi-sensor Climatology onboard GRACE
    The thermosphere lies between the exosphere and the mesosphere. The temperature in this layer can reach up to 4,500 degrees Fahrenheit. The thickness of this layer is about 513 km [NASA, 2018]. The thermosphere is the top level of the Earth atmosphere, located from 100 to 1000 km altitude. At 100 km already, the air density is twelve orders of magnitude lower than at the Earth’s surface. However, the remaining air is enough to exert a significant force on satellites orbiting the Earth at low heights. This perturbation is mainly due to high orbital velocity of 7.5 km/s, and the proportional relation between the air drag and the square of the speed. Since the space-borne accelerometer could measure the total non-conservative accelerations acting on the satellites directly, the air drag component could be isolated with the help of solar and earth albedo radiation pressure models, then the atmospheric density can be estimated, which provides necessary data for making evaluation and improvement of the existing atmospheric models.
    Leitung: Prof. Dr.-Ing. Jakob Flury, Dr.-Ing. Akbar Shabanloui
    Jahr: 2018
    Laufzeit: WiSe 2018/2019
  • European Gravity Service for Improved Emergency Management (EGSIEM)
    Massenänderungen, abgeleitet aus der Mission GRACE (Gravity Recovery And Climate Experiment), liefern grundlegende Einblicke in den globalen Wasserkreislauf der Erde. Änderungen in der kontinentalen Wasser-speicherung steuern den regionalen Wasserhaushalt und können in Extremfällen zu Überschwemmungen und Dürren führen. Das Ziel von EGSIEM ist, den Wasserkreislauf der Erde aus dem Weltall mit hoher zeitlicher und räumlicher Auflösung zu beobachten und vorherzusagen.
    Leitung: Prof. Dr.-Ing. Jakob Flury
    Team: Dr.-Ing. Akbar Shabanloui
    Jahr: 2015
    Förderung: European Commission (EC)
    Laufzeit: 2015-2017
  • Fusion of ranging, accelerometry, and attitude sensing in the multi-sensor system for laserinterferometric inter-satellite ranging (CRC 1128, B02)
    Die Qualität der Gravitationsfeld-Ergebnisse, die aus GRACE und GRACE Follow-On Inter-Satelliten-Messungen gewonnen werden, hängt nicht nur von der Messgenauigkeit ab. Ebenso wichtig ist die Qualität der Integration in das Multisensorsystem, bestehend aus K-Band Messungen, GNSS-Orbit-Tracking, Beschleunigungsmessung und Lageerkennung, sowie die Leistung dieses Systems als Ganzes. Die Systemleistung wird z.B. durch die Messungen der Sternkamera, durch die Charakteristika der Satellitenausrichtung, durch ungenaue Kenntnisse und Instabilitäten von Phasenzentren und Ausrichtungen der GNSS Antenne sowie durch Störeinflüsse der Beschleunigungsmessungen beeinflusst.
    Leitung: Prof. Jakob Flury, Dr. Gerhard Heinzel
    Team: Santoshkumar Burla, Henry Wegener, Dr. Akbar Shabanloui
    Jahr: 2014
    Förderung: DFG
    Laufzeit: 2014-2018

Weltraumsensorik

  • Multi-sensor Climatology onboard GRACE
    The thermosphere lies between the exosphere and the mesosphere. The temperature in this layer can reach up to 4,500 degrees Fahrenheit. The thickness of this layer is about 513 km [NASA, 2018]. The thermosphere is the top level of the Earth atmosphere, located from 100 to 1000 km altitude. At 100 km already, the air density is twelve orders of magnitude lower than at the Earth’s surface. However, the remaining air is enough to exert a significant force on satellites orbiting the Earth at low heights. This perturbation is mainly due to high orbital velocity of 7.5 km/s, and the proportional relation between the air drag and the square of the speed. Since the space-borne accelerometer could measure the total non-conservative accelerations acting on the satellites directly, the air drag component could be isolated with the help of solar and earth albedo radiation pressure models, then the atmospheric density can be estimated, which provides necessary data for making evaluation and improvement of the existing atmospheric models.
    Leitung: Prof. Dr.-Ing. Jakob Flury, Dr.-Ing. Akbar Shabanloui
    Jahr: 2018
    Laufzeit: WiSe 2018/2019
  • Disentangling gravitational signals and errors in global gravity field parameter estimation from satellite observations (SFB 1128, C01)
    Entfernungsraten-Residuen aus der Schätzung der globalen Schwerefeldparameter aus der GRACE-Satelliten-zu-Satelliten-Messung (SST) zeigen eine Reihe von systematischen Effekten, die die Genauigkeit der geschätzten Parameter einschränken. Das Projekt untersuchte die Eigenschaften von Zeitreihen von Range-Rate Residuen. Es wurde untersucht, wie sich ein Abfall des K-Band-Messung Signal-Rausch-Verhältnisses bei bestimmten Dopplerfrequenzen zwischen den Satelliten auf die Residuen auswirkt sowie Anomalien bei Penumbra-Durchgängen. Im Rahmen des Projekts an der TU Graz wurden in der Gruppe von Prof. Mayer-Gürr Möglichkeiten untersucht, Wavelet-Parameter in der SST-Schwerefeldparameterschätzung zu verwenden.
    Leitung: Prof. Jakob Flury
    Team: M.Sc. Saniya Behzadpour
    Jahr: 2014
    Förderung: DFG
    Laufzeit: 2014-2018
  • Highly physical penumbra solar radiation pressure modeling with atmospheric effects
    During penumbra transitions of an Earth orbiter, the solar radiation hitting the satellite is strongly influenced by refraction and absorption of light rays grazing the Earth’s atmosphere. The project implemented solar radiation pressure modeling including these effects. Model results were tested by comparing with measurements of the accelerometers of the GRACE low Earth orbiters.
    Leitung: Prof. Jakob Flury, Tamara Bandikova
    Team: Robbie Robertson (Virginia Tech, Blacksburg, VA)
    Jahr: 2010
    Förderung: RISE/QUEST
    Laufzeit: 2010
  • In-Orbit System Analysis of the Gravity Recovery and Climate Experiment (GRACE) Mission
    Die genaue Bestimmung und Kontrolle der Satellitenlage spielt eine Schlüsselrolle für die Satellitengeodäsie im Allgemeinen und für die Satelliten-zu-Satelliten-Verfolgung im Besonderen. Das Projekt lieferte die erste detaillierte Charakterisierung von GRACE-Lage-Fehlern und -Variationen. Die Untersuchungen betrafen die Variationen des Sichtwinkels zwischen den Sternkameras, die gewichtete Kamerakopfkombination sowie die Fehlerausbreitung zu Inter-Satelliten-Entfernungs- und Beschleunigungsmessungen. Die Ergebnisse führten zu signifikanten Verbesserungen in der operativen GRACE-Datenverarbeitung.
    Leitung: Prof. Jakob Flury
    Team: Tamara Bandikova
    Jahr: 2009
    Förderung: Exzellenzcluster QUEST
    Laufzeit: 2009-2015
    © IfE / Bandikova

SFB 1128 (geo-Q)

  • Disentangling gravitational signals and errors in global gravity field parameter estimation from satellite observations (SFB 1128, C01)
    Entfernungsraten-Residuen aus der Schätzung der globalen Schwerefeldparameter aus der GRACE-Satelliten-zu-Satelliten-Messung (SST) zeigen eine Reihe von systematischen Effekten, die die Genauigkeit der geschätzten Parameter einschränken. Das Projekt untersuchte die Eigenschaften von Zeitreihen von Range-Rate Residuen. Es wurde untersucht, wie sich ein Abfall des K-Band-Messung Signal-Rausch-Verhältnisses bei bestimmten Dopplerfrequenzen zwischen den Satelliten auf die Residuen auswirkt sowie Anomalien bei Penumbra-Durchgängen. Im Rahmen des Projekts an der TU Graz wurden in der Gruppe von Prof. Mayer-Gürr Möglichkeiten untersucht, Wavelet-Parameter in der SST-Schwerefeldparameterschätzung zu verwenden.
    Leitung: Prof. Jakob Flury
    Team: M.Sc. Saniya Behzadpour
    Jahr: 2014
    Förderung: DFG
    Laufzeit: 2014-2018
  • Fusion of ranging, accelerometry, and attitude sensing in the multi-sensor system for laserinterferometric inter-satellite ranging (CRC 1128, B02)
    Die Qualität der Gravitationsfeld-Ergebnisse, die aus GRACE und GRACE Follow-On Inter-Satelliten-Messungen gewonnen werden, hängt nicht nur von der Messgenauigkeit ab. Ebenso wichtig ist die Qualität der Integration in das Multisensorsystem, bestehend aus K-Band Messungen, GNSS-Orbit-Tracking, Beschleunigungsmessung und Lageerkennung, sowie die Leistung dieses Systems als Ganzes. Die Systemleistung wird z.B. durch die Messungen der Sternkamera, durch die Charakteristika der Satellitenausrichtung, durch ungenaue Kenntnisse und Instabilitäten von Phasenzentren und Ausrichtungen der GNSS Antenne sowie durch Störeinflüsse der Beschleunigungsmessungen beeinflusst.
    Leitung: Prof. Jakob Flury, Dr. Gerhard Heinzel
    Team: Santoshkumar Burla, Henry Wegener, Dr. Akbar Shabanloui
    Jahr: 2014
    Förderung: DFG
    Laufzeit: 2014-2018

QUEST

  • Highly physical penumbra solar radiation pressure modeling with atmospheric effects
    During penumbra transitions of an Earth orbiter, the solar radiation hitting the satellite is strongly influenced by refraction and absorption of light rays grazing the Earth’s atmosphere. The project implemented solar radiation pressure modeling including these effects. Model results were tested by comparing with measurements of the accelerometers of the GRACE low Earth orbiters.
    Leitung: Prof. Jakob Flury, Tamara Bandikova
    Team: Robbie Robertson (Virginia Tech, Blacksburg, VA)
    Jahr: 2010
    Förderung: RISE/QUEST
    Laufzeit: 2010
  • In-Orbit System Analysis of the Gravity Recovery and Climate Experiment (GRACE) Mission
    Die genaue Bestimmung und Kontrolle der Satellitenlage spielt eine Schlüsselrolle für die Satellitengeodäsie im Allgemeinen und für die Satelliten-zu-Satelliten-Verfolgung im Besonderen. Das Projekt lieferte die erste detaillierte Charakterisierung von GRACE-Lage-Fehlern und -Variationen. Die Untersuchungen betrafen die Variationen des Sichtwinkels zwischen den Sternkameras, die gewichtete Kamerakopfkombination sowie die Fehlerausbreitung zu Inter-Satelliten-Entfernungs- und Beschleunigungsmessungen. Die Ergebnisse führten zu signifikanten Verbesserungen in der operativen GRACE-Datenverarbeitung.
    Leitung: Prof. Jakob Flury
    Team: Tamara Bandikova
    Jahr: 2009
    Förderung: Exzellenzcluster QUEST
    Laufzeit: 2009-2015
    © IfE / Bandikova

Projektseminare

  • Multi-sensor Climatology onboard GRACE
    The thermosphere lies between the exosphere and the mesosphere. The temperature in this layer can reach up to 4,500 degrees Fahrenheit. The thickness of this layer is about 513 km [NASA, 2018]. The thermosphere is the top level of the Earth atmosphere, located from 100 to 1000 km altitude. At 100 km already, the air density is twelve orders of magnitude lower than at the Earth’s surface. However, the remaining air is enough to exert a significant force on satellites orbiting the Earth at low heights. This perturbation is mainly due to high orbital velocity of 7.5 km/s, and the proportional relation between the air drag and the square of the speed. Since the space-borne accelerometer could measure the total non-conservative accelerations acting on the satellites directly, the air drag component could be isolated with the help of solar and earth albedo radiation pressure models, then the atmospheric density can be estimated, which provides necessary data for making evaluation and improvement of the existing atmospheric models.
    Leitung: Prof. Dr.-Ing. Jakob Flury, Dr.-Ing. Akbar Shabanloui
    Jahr: 2018
    Laufzeit: WiSe 2018/2019
  • Globales Schwerefeld mittels GRACE High-Low-Satellite-to-Satellite-Tracking / Beschleunigungsansatz
    Die Modellierung des Schwerefeldes gehört zu den zentralen Aufgaben der physikalischen Geodäsie. Mit einem präzisen Schwerefeldmodell können beispielsweise Prozesse wie die postglaziale Landhebung, der Meeresspiegelanstieg oder Eismassenverluste global und quantitativ erfasst werden. Das Ziel dieses Projektseminars ist die Bestimmung eines Schwerefeldmodells für den Dezember 2008 unter Nutzung der Daten von GRACE. Hier werden jedoch nicht die Abstandsdaten des Interferometers genutzt, sondern die Satelliten werden als freifallende Körper betrachtet.
    Leitung: Prof. Dr.-Ing. Jakob Flury, Dr.-Ing. Akbar Shabanloui, Dr.-Ing. Majid Naeimi, M.Sc. Christoph Wallat
    Jahr: 2016
    Laufzeit: WiSe 2016 - SoSe 2017
  • Präzise Satellitenbahnmodellierung am Beispiel der neuen SWARM-Mission
    Aktuell werden Satelliten in vielen wissenschaftlichen Disziplinen verwendet. Besonders bei der Bestimmung des Erdschwerefeldes ist es wichtig, den Satellitenorbit präzise zu kennen. In diesem Projektseminar wurde eine Software zur Modellierung und numerischen Integration von LEO-Bahnen in MATLAB implementiert und anhand eines Beispielsorbits der ESA-Mission „Swarm“ getestet.
    Leitung: Prof. Dr.-Ing. Jakob Flury, Dr.-Ing. Akbar Shabanloui, Dr.-Ing. Majid Naeimi, Dr.-Ing. Manuel Schilling
    Team: Peter Alpers, Mahsa Bashi, Igor Koch, Damian Kröhnert
    Jahr: 2015
    Laufzeit: WiSe 2015 - SoSe 2016
  • Ultrapräzise Messungen in der GOCE-Wiedereintrittsphase
    Der Beginn der Wiedereintrittsphase des GOCE-Satelliten wurde durch das Abschalten des Ionentriebwerkes am 21.10.2013 gestartet. Das Ende der Wiedereintrittsphase wurde durch das Verglühen des GOCE-Satelliten in der Erdatmosphäre, über den Falkland-Inseln, am 11.11.2013 markiert. Im Rahmen der Arbeit wurden verschiedene Bereiche der Wiedereintrittsphase untersucht.
    Leitung: Prof. Dr.-Ing. Jakob Flury, Dr.-Ing. Akbar Shabanloui, Dr.-Ing. Majid Naeimi
    Jahr: 2014
    Laufzeit: WiSe 2014 - SoSe 2015
  • Konsistenzprüfung von Quasigeoid und Höhensystem durch Präzisions-GNSS an Nivellementpunkten im Harz
    Zurzeit wird das Höhensystem in Deutschland grundlegend erneuert: durch die Neumessung des Nivellementnetzes erster Ordnung, durch neue homogene GNSS Vertikal-Grundnetze und durch verbesserte Geoidmodelle unter Nutzung von GRACE- und GOCE- Satellitendaten. Dabei stellt sich die Frage der Qualität und Konsistenz dieser drei Komponenten des Höhensystems, also nach der Größe und Charakteristik der Restfehler. Davon hängt ab, wie genau in beliebigen Punkten physikalische (Normal-)Höhen - ohne Nivellement - aus GNSS- Messungen und (Quasi-)Geoidmodell bestimmt werden können, eine beispielsweise für Ingenieurprojekte relevante Aufgabe. Ein geeigneter Test dieser Fragestellung ist, sehr genaue GNSS-Messungen an ausgewählten Punkten mit vorhandenem Präzisionsnivellement durchzuführen und die Residuen in dem Budget ellipsoidische Höhe - Normalhöhe - Quasigeoidundulation zu untersuchen.
    Leitung: Prof. Jakob Flury, Markus Antoni, Sibylle Vey
    Jahr: 2011
    Laufzeit: WiSe 2011 - SoSe 2012