Laufende Forschungsprojekte
-
Korrektur von GNSS-Mehrwegeeffekten für die zuverlässige Eigenlokalisierung von hochautomatisierten Fahrzeugen in innerstädtischen Bereichen (KOMET)Die im Fahrzeugbereich verwendete Code-Range (Codemessung) liefert aufgrund ihres hohen Messrauschens nicht die notwendige Auflösung der Ortung. Aufgrund der komplexen GNSS-Signalausbreitung (Signalabschattung, Mehrwegeeffekte) in urbanen Umgebungen ist die Bestimmung einer genauen und robusten Positionslösung eine besondere Herausforderung - z.B. bei der Ortung in engen Straßenschluchten. Das geplante Forschungsvorhaben fokussiert sich daher auf die Entwicklung und Anwendung innovativer Korrekturverfahren zur Reduktion auftretender Mehrwegeeffekte, um die trägerphasenbasierte GNSS-Ortung zu verbessern.Leitung: Prof. Dr.-Ing. Steffen Schön, Dr.-Ing. Tobias KerstenTeam:Jahr: 2020Förderung: BMWi / TÜV Rheinland Consulting GmbH
© Ch. Skupin (Bosch)
-
Bounding and propagating observation uncertainty with interval mathematic (GRK 2159)Intervals (Jaulin et al 2001) can be seen as a natural way to bound observation uncertainty in navigation systems such as GPS, IMU or optical sensors like LIDAR, since they are in principle free of any assumption about probability distributions and can thus describe adequately remaining systematic effects (Schön 2016, Schön and Kutterer 2006). In this project, we intent to experimentally investigate in more details the actual size of observation intervals.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2020Förderung: DFG
-
Collaborative Navigation for Smart Cities (GRK 2159)Global Navigation Satellite Systems (GNSS) is the only navigation sensor that provides absolute positioning. However, urban areas form the most challenging environment for GNSS to achieve a reliable position. Because of the reduced satellite visibility and disturbed signal propagation like diffraction and multipath, the resulting position has a reduced accuracy and availability. The overall research objective of this project is to reduce these shortcomings through collaboration. Therefore, similarity of multipath at different locations within streets will be studied.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2019Förderung: DFG
-
QGyro: Quantum Optics Inertial Sensor ResearchIn diesem Vorhaben sollen hochgenaue Quanteninertialsensoren zur Stützung konventioneller Inertialnavigationssensoren entwickelt und getestet werden, die dann in verschiedenen weiteren Entwicklungsstufen bis zu 6 Messfreiheitsgraden ausgebaut und für eine autonome Navigation eingesetzt werden können.Leitung: Prof. Dr.-Ing. SchönTeam:Jahr: 2019Förderung: BMWi | Deutsches Zentrum für Luft und Raumfahrt (DLR) - 50RK1957Laufzeit: 2019 - 2022
-
Entwicklung und Test einer für Quantensensoren adäquaten Berechnungsstrategie für die InertialnavigationDurch neue Messprinzipien haben Quantensensoren signifikante Verbesserungen in Stabilität und Genauigkeit bei der Erfassung von inertialen Einflüssen erzielt. Anstelle mechanischer Federsysteme in Beschleunigungsmessern oder durch einen Faserkreisel oder Ringresonator umschlossene Flächen in Lasergyroskopen sind in Quantensensoren die Skalenfaktoren an atomare Übergänge gebunden und auf Frequenzmessungen zurückzuführen. Die alternativen Messverfahren und hohen Sensitivitäten der Quantensensoren erfordern eine adäquate Auswertestrategie, die sich von der klassischen Herangehensweise der Inertialnavigation unterscheidet. Ziel der Studie ist die Entwicklung und der Test einer entsprechenden Berechnungsstrategie, die gezielt die Anwendbarkeit der einzelnen Berechnungsschritte bei der Quanteninertialnavigation überprüft, und geeignete Alternativen, beispielsweise bei der Integrationsdynamik oder geschätzten Systemparametern, vorschlägt.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2018Förderung: DLR
-
VeNaDU 2: Verbesserte Positionierung und Navigation durch UhrmodellierungDieses Folgeprojekt zum Vorhaben VeNaDU untersucht zum einen den Performance-Gewinn durch den Einsatz hochstabiler Atomuhren in kinematischem PPP. Zum anderen soll eine Hardware-technische Umsetzung einer miniaturisierten Atomuhr in einem Einfrequenz-Empfänger realisiert werden.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2017
-
Optimale kollaborative Positionierung (GRK 2159, Thema 4)Kollaboratives Positionierung (CP) ist eine vielversprechende Technik, die auf einer Gruppe von dynamischen Knoten (Fußgänger, Fahrzeuge usw.) basiert. Diese sind mit verschiedenen (zeitsynchronisierten) Sensoren ausgestattet. Die Qualität der Positionierungs-, Navigations- und Zeitbestimmungsinformationen (PNT) kann dabei durch die Durchführung von Messungen zwischen Knotenpunkten oder Elementen der Umgebung (Stadtmöbel, Gebäude usw.) erhöht werden.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2016Förderung: DFG
-
Alternative Integritätsmaße mittels Intervallmathematik (GRK 2159, Thema 1)Dieses Dissertationsvorhaben beschäftigt sich mit der Entwicklung von alternativen Integritätsmaßen auf Basis der Intervallmathematik, Fuzzy-Theorie und unscharfer Zufallsvariablen.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2016Förderung: DFG
-
Improved GPS data analysis for the Swarm constellationNew concepts for GPS observation data quality assessment and positioning should be developed and evaluated taking advantage of variable geometries in the Swarm constellation.Leitung: Prof. Dr.-Ing. Steffen SchönTeam:Jahr: 2015Förderung: DFG