Publications

Showing results 1 - 20 out of 35

2024


Zhang, M., Müller, J., & Biskupek, L. (2024). Advantages of combining Lunar Laser Ranging and Differential Lunar Laser Ranging. Astronomy & Astrophysics, 681, Article A5. https://doi.org/10.1051/0004-6361/202347643

2023


Biskupek, L., Singh, V. V., & Müller, J. (2023). Estimation of Earth Rotation Parameter UT1 from Lunar Laser Ranging Observations. In J. T. Freymueller, & L. Sánchez (Eds.), Geodesy for a Sustainable Earth - Proceedings of the 2021 Scientific Assembly of the International Association of Geodesy (pp. 259-265). (International Association of Geodesy Symposia; Vol. 154). Advance online publication. https://doi.org/10.1007/1345_2022_178
Biskupek, L., Singh, V. V., Zhang, M., & Müller, J. (2023). Uncertainty determination of Earth rotation parameters from Lunar Laser Ranging. Abstract from 28th General Assembly of the International Union of Geodesy and Geophysics, IUGG 2023, Berlin, Berlin, Germany. https://doi.org/10.57757/IUGG23-2563
Singh, V. V., Müller, J., Biskupek, L., Hackmann, E., & Lämmerzahl, C. (2023). Equivalence of Active and Passive Gravitational Mass Tested with Lunar Laser Ranging. Physical Review Letters, 131(2), Article 021401. Advance online publication. https://doi.org/10.48550/arXiv.2212.09407, https://doi.org/10.1103/PhysRevLett.131.021401

2022


Biskupek, L., Singh, V. V., Müller, J., & Zhang, M. (2022). Estimation of Earth rotation parameters from Lunar Laser Ranging data . https://doi.org/10.5194/egusphere-egu22-3377
Singh, V. V., Biskupek, L., Müller, J., & Zhang, M. (2022). Earth rotation parameter estimation from LLR. Advances in Space Research, 70(8), 2383-2398. Advance online publication. https://doi.org/10.1016/j.asr.2022.07.038
Singh, V. V., Biskupek, L., Mueller, J., & Zhang, M. (2022). Estimation of Lunar Ephemeris from Lunar Laser Ranging. https://doi.org/10.5194/egusphere-egu22-2815
Zhang, M., Müller, J., Biskupek, L., & Singh, V. V. (2022). Characteristics of differential lunar laser ranging. Astronomy and Astrophysics, 659, Article A148. https://doi.org/10.1051/0004-6361/202142841
Zhang, M., Müller, J., Biskupek, L., & Singh, V. V. (2022). Characteristics of Differential Lunar Laser Ranging. https://doi.org/10.5194/egusphere-egu22-2841

2021


Biskupek, L., Müller, J., & Torre, J. M. (2021). Benefit of new high-precision llr data for the determination of relativistic parameters. Universe, 7(2), Article 34. https://doi.org/10.3390/universe7020034, https://doi.org/10.15488/12418
Singh, V. V., Biskupek, L., Müller, J., & Zhang, M. (2021). Impact of non-tidal station loading in LLR. Advances in space research, 67(12), 3925-3941. Advance online publication. https://doi.org/10.48550/arXiv.2012.05831, https://doi.org/10.1016/j.asr.2021.03.018

2020


Viswanathan, V., Mazarico, E., Merkowitz, S., Williams, J. G., Turyshev, S. G., Currie, D. G., Ermakov, A. I., Rambaux, N., Fienga, A., Courde, C., Chabé, J., Torre, J-M., Bourgoin, A., Schreiber, U., Eubanks, T. M., Wu, C., Dequal, D., Dell'Agnello, S., Biskupek, L., ... Kopeikin, S. (2020). Extending Science from Lunar Laser Ranging. Bulletin of the AAS, 53(4). https://doi.org/10.3847/25c2cfeb.3dc2e5e4
Zhang, M., Müller, J., & Biskupek, L. (2020). Test of the equivalence principle for galaxy’s dark matter by lunar laser ranging. Celestial Mechanics and Dynamical Astronomy, 132(4), Article 25. https://doi.org/10.1007/s10569-020-09964-6

2019


Biskupek, L. (2019). Die Kunst der Balance. Kultur und Technik, Das Magazin aus dem Deutschen Museum, 2019(3), 22-27. https://www.deutsches-museum.de/assets/Verlag/Download/Kultur_und_Technik/2019/KT3-2019-Web.pdf
Müller, J., Hofmann, F., & Biskupek, L. (2019). Warum man den Abstand zum Mond misst. In Jahrbuch 2018 der Braunschweigischen Wissenschaftlichen Gesellschaft (Vol. 2018, pp. 17-28). (Jahrbuch der Braunschweigischen Wissenschaftlichen Gesellschaft; Vol. 2018). Cramer. https://doi.org/10.24355/dbbs.084-201905071310-0

2018


Hofmann, F., Biskupek, L., & Müller, J. (2018). Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model. Journal of geodesy, 92(9), 975-987. https://doi.org/10.1007/s00190-018-1109-3
Philipp, D., Wöske, F., Biskupek, L., Hackmann, E., Mai, E., List, M., Lämmerzahl, C., & Rievers, B. (2018). Modeling approaches for precise relativistic orbits: Analytical, Lie-series, and pN approximation. Advances in Space Research, 62(4), 921-934. Advance online publication. https://doi.org/10.48550/arXiv.1708.04609, https://doi.org/10.1016/j.asr.2018.05.020

2015


Biskupek, L. (2015). Bestimmung der Erdorientierung mit Lunar Laser Ranging. [Doctoral thesis, Leibniz University Hannover]. Verlag der Bayerischen Akademie der Wissenschaften. https://doi.org/10.15488/4721
Hofmann, F., Müller, J., & Biskupek, L. (2015). Lunar Laser Ranging: Das Erde-Mond-System und Tests der Einstein'schen Gravitationstheorie. zfv – Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 140(6), 337-345. https://doi.org/10.12902/zfv-0087-2015
Müller, J., Biskupek, L., & Hofmann, F. (2015). Earth Orientation and Relativity Parameters determined from LLR Data. In Proceedings of the 19th International Workshop on Laser Ranging https://cddis.nasa.gov/lw19/docs/2014/Papers/3033_Mueller_paper.pdf