Current Research Projects

  • Terrestrial Clock Networks: Fundamental Physics and Applications (CRC 1464, C02)
    The continuous developments of optical clocks and the long-distance links via fibers, especially within TerraQ, will give access to terrestrial clock networks in practice, which will enable the novel measurement concept of chronometric levelling. From a theoretical perspective, this project will elaborate the rigorous relativistic formalism for clock-based geodesy and assess the effects of approximations in different scenarios. Furthermore, this project will figure out the most promising applications for clock networks in geodesy and fundamental physics.
    Led by: Prof. Dr.-Ing. Jürgen Müller, Prof. Dr. Claus Lämmerzahl
    Team: Marion Cepok, Asha Vincent
    Year: 2021
    Funding: DFG
  • Differential Lunar Laser Ranging
    Led by: Prof. Dr.-Ing. habil. Jürgen Müller
    Team: M. Sc. Mingyue Zhang
    Year: 2021
    Funding: Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers (DFG), DLR-SI
    Duration: 2021 - 2022
  • Improved modelling of the Earth-Moon system
    Led by: Prof. Dr.-Ing. Jürgen Müller
    Team: Vishwa Vijay Singh, M.Sc.
    Year: 2020
    Funding: DLR-SI
    Duration: 2019 - 2022
  • LLR contribution to reference frames and Earth orientation parameters
    Led by: Prof. Dr.-Ing. Jürgen Müller
    Team: Dr.-Ing. Liliane Biskupek
    Year: 2019
    Funding: Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers (DFG), DLR-SI
    Duration: 2019 - 2025
  • Relativistic investigations with LLR data
    Led by: Prof. Dr.-Ing. habil. Jürgen Müller
    Team: Dr.-Ing. Liliane Biskupek
    Year: 2019
    Funding: Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers (DFG)
    Duration: 2019 - 2025
  • Chronometrisches Nivellement
    Led by: Dr.-Ing. Heiner Denker
    Team: Dr.-Ing. Heiner Denker und weitere Mitarbeiter
    Year: 2019
    Funding: verschiedene Landes- und Drittmittel sowie separate Projekte
    Duration: seit 2010
  • High-performance clock networks and their application in geodesy
    The rapid development of optical clocks and frequency transfer techniques provides the opportunity to compare clocks’ frequencies at the uncertainty level of 10-18. This will enable relativistic geodesy with the aimed accuracy of cm in terms of height. Clock networks are thus highly relevant to various geodetic applications, such as the realization of a height reference system and the determination of regional/global gravity fields. In this project, we aim to investigate the potential of high-performance clock networks and quantify their contributions to specific applications through dedicated simulations.
    Led by: Prof. Dr.-Ing. Jürgen Müller
    Team: Dr.-Ing. Hu Wu
    Year: 2019
    Funding: Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers” (DFG)