ACES-PHARAO and its two-way Microwave Link

Frédéric Meynadier (BIPM, formerly SYRTE — Observatoire de Paris)

IAG Joint Working Group 2.1 Relativistic Geodesy meeting
10 - 11 October 2018

Bureau |'.@Vdaetpglsre SYRTE
T International des

Poids et
} Mesures (P. Delva, C. le Poncin-Lafitte, A. Hees,

C. Guerlin, E. Savalle, P. Laurent, P. Wolf)



The ACES mission

m Realize the best timescale on orbit to date

m Allow time comparison with the best clocks on ground
m Use those comparisons for several fundamental physics tests

m Demonstrate possible applications in intercontinental clock comparisons, in
chronometric geodesy, etc. ..




A cold atom clock in space
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The payload
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m PHARAO (CNES): Cold atom Caesium
beam clock

m SHM (ESA): Active Hydrogen Maser

m FCDP (ESA): Clock comparison and
distribution

m MWL (ESA): Microwave link
m GNSS Receiver (ESA)

m ELT (ESA): Laser link

m Support subsystems (ESA)

B XPLC: Computer

B PDU: Power supplies

B Mechanical / thermal subsystem
|

Columbus interface module (ESA / NASA)



Launch expected in 2020 (SpaceX)

Falcon9 launcher
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Colombus module onboard the ISS




ACES Mission comp
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ACES Ground segment
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Microwave link principle

Ku-band uplink: 13.475 GHz
Ku-band downlink: 14.703 GHz
S-band downlink: 2.24 GHz (iono delay)

code: 100 Mcps
The two-way technique cancels out, at first order, the geometric distance and the tropospheric delay

ISS trajectory
1SS trajectory

3
3

Ground station
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A configuration (interpolated)
uplink and downlink signals generate 1 minimizes the effect of ISS position

measurement every 80 ms uncertainty



Ground terminals localisation

Gty
- A —‘1‘
~ E
. L
* e
4

NPL SYRTE PTB

“V .‘;!“:-—.\JPL NIST

e

4

N
\\

X
+ 1 transportable terminal for calibration

~ \\_\_

+ 1 transportable terminal in Europe (METAS-CH, Wettzell-DE)




Development of data processing software in SYRTE

Software has been developed within the “Theory” group in SYRTE — Observatoire de
Paris (head: P. Wolf, national coordination: C. le Poncin-Lafitte)

Processing software

m Early developments ~ 10 years ago
m First lines of this code written in 2011

m Takes raw data as input and returns desynchronisation (+ TEC, pseudo-range. . .)
between ground terminal and flight segment.

m Validation with an independant simulation, developed by P. Delva

Unexpected issue: bridge the gap between raw data (counter values) and the time
transfer equations (which take pseudo-time of flight as input).

Software is considered ready since end of 2017



Vlicrowave link data generation

as inferred from docs & exchanges with TimeTech
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Global flowchart

Design at module level:

m Process is iterative by nature
(need rough idea of clock
desynchronisation to get timetags
right).

m Need careful choice of
interpolation dates and method




Global flowchart
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A typical pass
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m Top: input desynchronisation (drift = GR)
m Bottom: residuals (theoretical — calculated desynchronisation)
m Noise = counter quantization (= noise floor)



Major milestone: Carrier disambiguation
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Simulated passes with desynchronisation (1 ms offset + RG drift), code residuals mean
values change within &= 10 ps as expected, but carrier residuals mean values stay stable
at the sub-ps level.



Simulation of ISS orbitography uncertainty impact
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Mean TDEV of desynchronisation residuals for 0, 1, 10 and 100
times the expected ISS orbitography uncertainty (F. Meynadier et
al. 2018 Class. Quantum Grav. 35 035018)



If everything goes well. ..

m Gravitational redshift test (Local Position Invariance in General Relativity
framework)

m Test of fundamental constants stability (comparison between different ground
clocks, different atom species)

Test of space isotropy (Local Lorentz Invariance)

More generally, tests of GR alternatives

and of course, geodesy




Specifications (in 2016)
PHARAO frequency standard

m Systematic effects < 3 x 10710
m Frequency stability 10713¢t=1/2 for ¢t < 20d

PHARAO + SHM timescale stability

m sub-ps @ 300 s, 40 ps ©@ 20 d

m space-to-ground: stability ~ 1 ps @ 300 s (one ISS pass)
m ground-to-ground:

m common view: a few ps @ 300 s
m non-common view: stability 7 ps @ 1 day (i.e. freq. comparison < 1071¢) @ 1d

m Accuracy: 100 ps



