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The ACES mission

Objectives

Realize the best timescale on orbit to date
Allow time comparison with the best clocks on ground
Use those comparisons for several fundamental physics tests
Demonstrate possible applications in intercontinental clock comparisons, in
chronometric geodesy, etc. . .



A cold atom clock in space

FO2, Rb/Cs fountain
(SYRTE)

FOM, Cs mobile fountain
(SYRTE)

Fountain principle

Pharao, Cs beam
(CNES, SODERN, SYRTE)

Pharao schema



The payload

Éléments
PHARAO (CNES): Cold atom Caesium
beam clock
SHM (ESA): Active Hydrogen Maser
FCDP (ESA): Clock comparison and
distribution
MWL (ESA): Microwave link
GNSS Receiver (ESA)
ELT (ESA): Laser link

Support subsystems (ESA)

XPLC: Computer

PDU: Power supplies

Mechanical / thermal subsystem

Columbus interface module (ESA / NASA)



Launch expected in 2020 (SpaceX)

Falcon9 launcher Dragon Capsule



Colombus module onboard the ISS



ACES Mission components



ACES Ground segment



ACES Ground segment



Microwave link principle
Ku-band uplink: 13.475 GHz
Ku-band downlink: 14.703 GHz
S-band downlink: 2.24 GHz (iono delay)
code: 100 Mcps
The two-way technique cancels out, at first order, the geometric distance and the tropospheric delay
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Ground terminals localisation



Development of data processing software in SYRTE

Software has been developed within the “Theory” group in SYRTE – Observatoire de
Paris (head: P. Wolf, national coordination: C. le Poncin-Lafitte)

Processing software

Early developments ' 10 years ago
First lines of this code written in 2011
Takes raw data as input and returns desynchronisation (+ TEC, pseudo-range. . . )
between ground terminal and flight segment.
Validation with an independant simulation, developed by P. Delva

Unexpected issue: bridge the gap between raw data (counter values) and the time
transfer equations (which take pseudo-time of flight as input).

Software is considered ready since end of 2017



Microwave link data generation
as inferred from docs & exchanges with TimeTech
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Global flowchart

Design at module level:
Process is iterative by nature
(need rough idea of clock
desynchronisation to get timetags
right).
Need careful choice of
interpolation dates and method
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Global flowchart

Calibration data

On-board carrier
phase and code

phase measurements

Ground stations
carrier phase and
code measurements

Ground “orbitography”

Space orbitography

Atmospheric parameters

MWL software

Total electron content

Clock desynchro.

Range + tropo

Tropospheric
delay

Range

Range model

Tropo. model

Within a framework that allows robust automated operation, scientific validation,
interface with external databases.



A typical pass

Top: input desynchronisation (drift = GR)
Bottom: residuals (theoretical − calculated desynchronisation)
Noise = counter quantization (= noise floor)



Major milestone: Carrier disambiguation

Simulated passes with desynchronisation (1 ms offset + RG drift), code residuals mean
values change within ± 10 ps as expected, but carrier residuals mean values stay stable

at the sub-ps level.



Simulation of ISS orbitography uncertainty impact

ISS orbitography
uncertainty estimation
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If everything goes well. . .

Gravitational redshift test (Local Position Invariance in General Relativity
framework)
Test of fundamental constants stability (comparison between different ground
clocks, different atom species)
Test of space isotropy (Local Lorentz Invariance)
More generally, tests of GR alternatives
and of course, geodesy



Specifications (in 2016)

PHARAO frequency standard

Systematic effects < 3× 10−16

Frequency stability 10−13t−1/2 for t < 20d

PHARAO + SHM timescale stability

sub-ps @ 300 s, 40 ps @ 20 d

Time transfer

space-to-ground: stability ' 1 ps @ 300 s (one ISS pass)
ground-to-ground:

common view: a few ps @ 300 s
non-common view: stability 7 ps @ 1 day (i.e. freq. comparison < 10−16) @ 1d

Accuracy: 100 ps


