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Relativistic clock comparison effects effects

effect term on Earth for satellites
longitudinal Doppler v/e negligible < 1072 per day
transversal Doppler v?/c? Earth rotation | < 107° s per day
Sagnac effect WOy /c? upto 10713 ~ 1077 s per orbit
1st order grav. redshift AU /c? up to 10~ ~ 1077 s per day
2nd order grav. redshift (AU /c?)? negligible ~ 10714 s per day

GM
gravitational time delay 5 In % negligible ~1071s

C

gravitomagn. clock effect J/Mc? measurable(?) | ~ 1077 s per orbit

relevant effects have to be included in TAl and in Galileo (~ 10 km/day) )
in general, most of these effects cannot be strictly separated — this is possible only for weakC@ds/
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LAGEOS

LAGEOS (LAser GEOdynamics Satellite)

P> Satellite equipped with laser reflectors
P> high density — small air drag

science

P> measuring Earth mass multipoles

P> confirmation of Lense-Thirring effect with accuracy
of approx. 10%

P> improvement with LARES (Laser Relativity Satellite)
in ca. 5 years with accuracy of approx. 1%

NASA
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New method: Laser interferometry

GRACE-FO: laser interferometry (AElI Hannover)
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Sublised

K3 band ranging
=

precision ~ 10 nm
relativistic effects of the order 100 um = General Relativity has to be considered
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Theoretical framework

P> gravitational field from matter: Einstein equation (Einstein, SBPAW 1915)

1 G

v gWR = —T

R A T

P> equation of motion of a pointlike particle moving in the gravitational field: geodesic equation
A2t dzf dx®

+{pt——
ds? {0} ds ds

{ s } is the Christoffel symbol, and ds = /g, dxFdz”
extended particles: Mathisson-Papapetrou-Dixon equations (Dixon 1968)

s:/ds

operationally defined through standard clocks (Perlick, GRG 1987), approximately (on Earth with
highest precision) realized by atomic clocks

0=

P> clock reading = proper time

“
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Consequences

P> effect on light rays
P> light deflection (VLBI, Gaia) Eddington
P> lensing Twin Quasar Q0957+561
P> shadows of black holes (EHT)
P> orbital effects
P> perihelion shift (Mercury) Le Verrier
P> Lense-Thirring effect: spin-orbit coupling (LAGEOS) Ciufolini
P> back reaction effects (binary systems) Hulse-Taylor, grav. waves
P effects on extended bodies
P> Schiff effect: spin-spin coupling (GP-B) Everitt
P> clock effects / effects on frequency
P> gravitational redshift Pound-Rebka, GP-A
P> gravitational time delay Cassini

P> gravitational waves Abbott et al
+ all special relativistic effects: time dilation, Doppler effect, Sagnac effect, length contraction,
aberration, ...
%4
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The standard clock

relative distance in rest space (¢ = 1)
Ax = At

At

Ax

At

%
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The standard clock

relative distance in rest space (¢ = 1)
Ar = At

relative velocity (invariant)

. dx —g(Az, Ax)
r=—— = _—
dt g(u,u)
relative acceleration & = ... (complicated expression)
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The standard clock

N A

relative distance in rest space (¢ = 1)
Ar = At

relative velocity (invariant)
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The standard clock

N

relative distance in rest space (¢ = 1)
Ar = At

relative velocity (invariant)

. dx —g(Az, Ax)
r=—— = _—
dt g(u,u)
relative acceleration & = ... (complicated expression)

Definition (Perlick GRG 1987)

An observer (in arbitrary motion) is equipped with a standard
clock if for all freely falling particles she measures the same
i

1— a2

%
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- 14/52 The gravitational redshift

The gravitational redshift within GR

P> light ray given by trajectory with tangent [(\) obeying
g(l,L)=0

P> observer with standard clock given by trajectory with
tangent u(7) obeying g(u,u) =1

measured frequency
v=g,ltv =ku" with k, =g,10"
stationary gravitational field: £ Killing vector =

k(€) = const = gravitational redshift for stationary
observer u = e=%¢

observer1 observer 2 = = =
o k(uy)  eh 9 (m1) c?

ﬁ_k(%)_e%_ gtt(rz)ml_GM(l 1)
s T

light needs not to propagate along geodesics — optical fibers are allowed

C/
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General relativistic definition of geoid I: Clocks

Basic notions (T + AT)
P>k is the wave vector of a light ray
P> is the 4-velocity of an observer (T + AT) )

Y\T

P> Measured frequency given by
vi=k(u) = k,ut = g, k'u”
The redshift defined by light ray can be V(1)
related to a redshift potential ¢
() 1
(b(.’]l') =1n V(.'L’O) ) AT

P> possesses the correct post-Newtonian approximation
P> Can be extended to light rays propagating in optical fibers (no geodesics) with known position
dependent diffraction index
¢ gives the redshift =
¢ is a fully general relativistic geoid
Z
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Clock comparison with optical fibers

generally valid representation of metric
g=e* (— (cdt + o, (z)dz®)” + aab(x)dxada:b)

light propagation through fiber ((:) = %(-))

0=g,,"i" & cdt + a,dz® = ) ay,dxtdzb

gives coordinate travel time

t 1
At =ty — 1t :/ dt = E/ (y/aabﬂb“ﬁcb—acﬁcc) ds
3%

this gives redshift (with dr/dt = e?)

v _di didt  ® G,
poodr  dtdr  e® g,

2z
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Clock comparison with optical fibers

with refractive index we have a modified “metric”

g=e* <_n2L(x) (cdt + o, (z)dz®)” + aab(m)dx“dmb>

modified redshift B
v _e’n

v oeth
with known refractive index we can determine the gravitational redshift potential

Z
—
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Relativistic geoid Il: Model of the Earth
Earth described by a continuum, relative velocity between constituents can be decomposed
1
vt =wh Y 4 ot rY + 507'“

P> abody is called rigid, if all spatial distances and angles between nearby particles remain constant

The rigid body

A non-expanding and shear-free congruence is called rigid.

the rigid body can still rotate and accelerate in a time-dependent way

If for a rigid body the rotation is constant and the acceleration rotates with the rigid body, then
P> the congruence is stationary,
P> the acceleration can be derived from a potential.

D
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Relativistic geoid Il: Model of the Earth

Definition
A congruence is called stationary if u is proportional to a Killing vector field § with £.g = 0. This is
also called an isometry.

b £=eu

P> expansion § = 0, shear o = 0

| 2 a, =D,u, = _8u¢

P> potential is time independent: D, ¢ = 0

the acceleration of falling bodies (falling corner cubes, plumb lines) is given by a potential ¢ =

¢ is a fully general relativistic geoid

%
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The synthesis

Both definitions of a geoid coincide

both, clocks and falling bodies, define the
same geoid
measurements can be combined

2
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The synthesis

Geoid in Erez-Rosen space-time

Theorem
Both definitions of a geoid coincide am-0.0o
=1,

both, clocks and falling bodies, define the
same geoid
measurements can be combined

Philipp, Hackmann, Perlick,
Puetzfeld, C.L., PRD 2017
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Question

P> how to measure the geoid from space, that is, with moving satellites —

P> changing positions — changing gravitational redshift
P> varying velocity — changing Doppler shift: linear and quadratic



Clock comparison space — ground

General problem: clock and frequency comparison

between clock on ground (rotating) and clock on a

satellite (orbiting the Earth)

P> clock on rotating Earth

P> satellite moving on geodesic

P> electromagnetic signal between satellite and Earth
moves on geodesic: emitter-receiver problem

simplified model

P> radial signals

P> Schwarzschild orbits

B 2752




Timing: special case

slightly simplified case

P> clock orbiting the Earth in circular motion

P> Schwarzschild geometry Ty
P> time comparison through vertical light rays \

result §

Y1 _ 900(7"2) T

1
M
Vy \/l—i—m 9oo(r1) ‘C?
has to be generalized to arbitrary links "

Earth
for 2nd pN approximation of general case see Linet & Q
Teyassandier, PRD 2002

%
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Timing: special case Il

P> radially freely falling clock
P> radial time comparison r
result

ho_ 9oo(T2) 9oo(T2)

Vy (E —/E? — goo(rQ)) 9oo(r1) &
E related to initial velocity of clock, where 7, has to @

be determined as function of proper time from the

geodesic equation Earth
interpretation

P> first factor: velocity of freely falling clock {3\

P> second factor: gravitational redshift

“

—
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Timing: The general case
spherically symmetric space-time, stationary observer
Gie = 9 (0')? = Q%1

general redshift

b (ut—|— U_T> 9u(re)

Gt 1+ 7"5992

with geodesic motion of u*

Y 9u(rg) B \/E2 — 9u(r) (1 + %)
vo |l gu(r) V9 (r)y/1+ r2Q2

where 7 is the solution of the geodesic equation: r = (), r = r(t), r = r(s)

Z
—
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First analytic results

semi-major axis 27977600
eccentricity 0.15

orbital radius rfs] / rg

"2
proper time s
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First analytic results
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needs to be generalized to

P> Kerr space-time

P> space-time with multipole moments
P> non-radial signal transmission

2
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Gravitational time delay

At

sender

receiver



Gravitational time delay

At > At
sender receiver
4T v(t) M db
At =2(1 M In 222 or =2 _91 M e
1+7)Mn—3 y=- A+7)5 =
b is impact parameter
P forthe Sun At ~107% s,y ~ 107°
P for the Earth At ~ 107! s, y ~ 107'2 — however: better statistics
P> for positioning: corresponds to approx. 1 cm in distance
requires three or more frequencies in order to eliminate atmospheric influences
C/
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The gravito-magnetic clock effect

P> rotating mass = gravito-magnetic field
2Mr
3 2 g2
r2 4+ a? cos?
P> from geodesic equation for circular orbits in equatorial plane

de
E = :l:QO + QLense-Thirring

P> difference of proper time for clocks on two counter-propagating satellites

ds? = .. asinzﬁdcpdt—i—...

J
s+—s_:47TM~10_7s

P> depends neither on G noron r

P> becomes smaller for increasing inclination

P> vanishes for polar orbits

P> generalization for arbitrary orbits: Hackmann, C.L., PRD 2014

B 34/52
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Questions, challenges

P> how to measure the geoid from space, that is, with non-stationary moving satellites
one has to add Doppler shifts related to the satellite’s velocity; precision limited by knowledge of

velocity and position of the satellite

P> what is the meaning of the other components, degree of freedom, of the gravitational field (as,
e.g., the Kerr parameter)? Do these parameters define their own geoid?

P> how to relate the geoid with the multipole moments of the gravitational field at infinity or with
the mass multipoles of the Earth?
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Multipole moments

for a given mass distribution the Newtonian gravitational potential of this gravitating body is given by

- —G/ f(T2 d3vl
=]

asymptotic expansion (expansion for large distances) of the integral

M p Q Q Aerr /rk
UF) = = igTi"; ijk" i
) T + r3 r5 + r? *

with

M = G/p(?)d3V monopole

D= G/:cp Va2V dipole

Qij = G/ (3ryr; —1%cd ;) p(F)d*V quadrupole

= moments defined through asymptotic expansion = multipole moments of mass distribution

Z
=
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General relativistic multipoles

Newton gravity
GM 2 Goray! :
U= - (1 — lgl 570 (;) (C,,,, cos(mep) + S,,,, sin(my)) P, (cos 19))

coefficients describing the relativistic gravitational field

P> static axially symmetric space-time: multipole expansion of gravity well defined, Weyl space-times

P> multipoles in stationary axially symmetry (Quevedo & Mashhoon, PRD 1991)

relativistic mass multipoles of the gravitating mass

P multipoles defined at spatial infinity for stationary axially symmetric space-times (Geroch,
Hanson, 1970)

P> not defined for non-axially symmetric space-times

P> mass multipoles as integrals over the energy momentum tensor (Dixon, 1964 - 1974), requires a
frame of reference

due to non-linearity of the Einstein theory, no unique relation known

can be resolved in post-Newton approximation (Thorne 1980, Damour, Soffel, Xu, 1992 - 1994)

W 39/52 Multipole moments [ ZARM e
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Weyl space-times

P> Weyl space-times given by
ds? = e®Vdt? — e 2V (p2dp? — e¥V(dp* + dz?))
where 1 obeys Ay = 0 with solutions
oo
P = ZZ:; s Py(cos )

» possesses two Killing vectors £ = 9, and 1) = 9, + Q0,,
P coordinate transformation p? = m?(z? — 1)(1 — y?), so that

= Z 1) qQ(x) Py (y)

with g; mass multipole moments (can be read off from Newton limit) and potentials
62¢stat — 6211) , €2¢rot — €2¢ — m2Q26_2¢(x2 _ 1)(1 i y2)
%
<
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Weyl space-times

P> representation of Weyl metric in terms of multipole moments

dx dy?
ds? = e2¥ 2 — —2% -1 d 2y _
e (e ] )

P> geoid given by

W, = \/621/’ —m2Q2e2¥(z2 —1)(1—9y2) —1

with

N

(53]

2= (-1 g A (y) (Pz(rv) it -2 3 %B_M(x))

=0 k=

guestion: non-axially symmetric space-times, mass distributions?

“
=
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Weyl space-times

P> representation of Weyl metric in terms of multipole moments

dx dy?
ds? = e2¥ 2 — —2% -1 d 2y _
e (e ] )

P> geoid given by

W, = \/621/’ —m2Q2e2¥(z2 —1)(1—9y2) —1

with

N

(53]

2= (-1 g A (y) (B(x)lnifi 23 %B_%_m)

=0 k=

question: non-axially symmetric space-times, mass distributions?

%
=
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Relativistic geoid

comparison of location of pN and Newtonian geoid, for axially symmetric quadrupole moment

Philipp,
Hackmann,
C.L. 2018

%
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Relativistic geoid

comparison of acceleration for Schwarzschild and Kerr

Philipp,
Hackmann,
nGal C.L. 2018

15 0.4
[ . o
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General relativistic orbit modelling

\ A A 4

- 45/52  Orbit modelling

general relativistic treatment of orbits is needed

only for very few space-times analytic solutions of the
geodesic equations are known (Hackmann, Kagramanova,
Kunz, C.L., EPL 2009)

for realistic space-times one needs numerical codes

successful implementation of post-Newton effects of
Schwarzschild gemetry in XHPS developed at ZARM and
DLR-RY (Philipp, Woske, Biskupek, Hackmann, mai, List,
Rievers, C.L., submitted)

also comparison with analytical Lie series approach
implementation for clocks under way

challenge: implementation for general space-times

difference [10°2nm]

difference [107% nm|

oS W e

difference [nm]

o xS

O - -

azimuthal angle




Contents

Open questions

» The relativistic quasi-geoid

%
C_
W 46/52  The relativistic quasi-geoid [T ZARM e



The relativistic quasi-geoid

P> problem: determine the geoid
inside mountains

P> requires to solve gravitational
field equation

P> is fine for Newton, is
complicated for Einstein field
equation (nonlinear system -
is under consideration)

% Niveauelipsod

2
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The ellipsoid Model of the Earth

the non-relativistic ellipsoid - various definitions

P> ellipsoid with best fit to the surface of the Earth (geometry)
P> ellipsoid with best fit to the geoid of the Earth (gravity)
P> shape of a figure of equilibrium of an ideal fluid (self gravity)

general relativistic generalizations?

P> best fit to general relativistic geoid is feasible (in terms of
minimizing the invariant volume between the ellipsoid and the geoid)

P> rotating figure of equilibrium - no analytical solution known

P> is there an influence of the other components of the gravitational field (like, e.g., the Kerr
parameter) on the definition of the ellipsoid?

P> do we need further ellipsoids for the other gravitational degrees of freedom?
do we need an ellipsoid?
P> ellipsoid is used by GPS - necessary?

W 49/52  The relativistic ellipsoid [ ZARM e
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Summary and outlook

P> new measurement schemes require general relativistic treatment of geodesy

P> general relativistic definition of the geoid

Outlook - challenges

P> determination of the geoid using satellites

P> where are the other gravitational degrees of freedom?

P> general relativistic multipoles of the gravitational field vs. general relativistic mass multipole
moments

P> measurements with satellites
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