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Progress of frequency standards over time

 Optical frequency standards surpass Cs standards
 By up to 2 orders of magnitudes

 Points toward a redefinition of the SI second
 Once readiness of optical frequency standards is proven

 Status of optical frequency standards
 See e.g. Rev. Mod. Phys. 87, 637 (2015)
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Optical frequency standards

 Current primary frequency standards
 Cs hyperfine transition in laser-cooled atomic fountains

 Accuracy: 2-3x10-16 , stability: <2x10-14 at 1s

 Optical frequency standards
 Atomic transition frequency near 1015 Hz

 The fundamental output is the ultra-stable oscillation of electromagnetic fields
of laser light

 Importance of ultra-stable lasers
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Lamb-Dicke spectroscopy

 Need to deal with the effect of external motion
 Limitation of probe time, Doppler shift, recoil shift, relativistic time dilation

 Laser-cooled atoms: v~1 cm/s, v/c ~3x10-11 !

 Laser cooling & tight confinement
 Quantized states of motion

 Lamb-Dicke / resolved sideband regime

 Effects of motion in sidebands. Carrier essentially unaffected.

 Need to care for effects of trapping fields
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(Single) ion optical clocks

 Paul trap
 Electric field acting on ion charge

 Mitigation of trapping effects
 Laser-cooling

 Single ion at trap center where <E> = 0

 Detection by electron shelving
 Observation of quantum jumps

 Disadvantage
 Low signal-to-noise (quantum projection noise for N=1)

 Advantage
 Ion kept cycle-to-cycle

 No collision shift

clock
Detection

(& cooling)
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(Single) ion optical clocks

 Candidates
 Hg+, Ca+, Sr+, Yb+(E2), Yb+(E3), In+, etc.

 Quantum logic clocks
 Al+, assisted by Be+, Mg+, Ca+

 Examples
Yb+(E3) at PTB: 3.2x10-18

clock

Detection
(& cooling)

Huntemann et al. PRL 116,063001 (2016)

Al+ at NIST: 8.6x10-18

Chou et al. PRL104,070802 (2010)
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Optical lattice clocks

 Dipole lattice trap
 By an intense standing-wave laser field

 Mitigation of trapping effects
 Laser cooling

 Lattice trap at magic wavelength

 Detection
 Fluorescence

 Disadvantage
 Atom-atom interactions

 Advantage
 High signal-to-noise: N=104-105

 Possibility of non-destructive detection

Katori, Proc. SFSM (2001) 
& PRL (2003)

clock
Detection

(& cooling)

Vallet et al., New J. Phys. 19 083002 (2017)
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Optical lattice clocks

 Candidates


87Sr, 88Sr, Yb, Hg, Mg, Cd, etc.

 Examples

Nicholson et al., Nat. 
Com. 6, 6896 (2015)

Sr at JILA: 2.1x10-18

Ushijima et al. Nat. Phot. 10, 665 (2016)

Sr at UT/RIKEN: 4.8x10-18 Yb at NIST: 1.4x10-18

Beloy at al. EFTF 2018
PRL120, 183201 (2018)
PRL 119, 253001 (2017) 
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Assessing optical frequency standards

 Same frequency standard comparisons
 Chou et al., Al+ (2010), Le Targat et al. Sr (2013), Bloom et al., Sr (2013), Ushijima et al., Sr (2015),

Beloy et al., Yb (EFTF 2018)

 Now down to the low 10-18

 Frequency ratios
 13 optical transitions against Cs to <10-14.

 7 optical-to-optical ratios

 Down to 4.6x10-17

 Sr/Yb & Sr/Hg measured in at least 2 places

 Monitored by CCTF & CCL
 CIPM CCL-CCTF WG FS

 In the view of a redefinition of the SI second

 F. Riehle et al., Metrologia 55, 188 (2018)

 BIPM website Ratio Value Fractional uncertainty Reference

88Sr/87Sr 1,0000001448836827727 2.30E-17 Takamoto2017

Hg/Sr 2,62931420989890915 1.80E-16 Tyumenev2016

Hg/Sr 2,62931420989890960 8.40E-17 Yamanaka2015

Yb/Sr 1,207507039343337749 4.60E-17 Nemitz2016

Yb/Sr 1,20750703934333776 2.40E-16 Takamoto2015

Yb/Sr 1,2075070393433412 1.40E-15 Akamatsu2014

Hg/Yb 2,17747319413456507 2.50E-16 Takamoto2015

Yb(E2)/Yb(E3) 1,07200737363420630 3.40E-16 Godun2014

Sr/Ca+ 1,0442433345296416 2.40E-15 Matsubara2012

Al+/Hg+ 1,052871833148990438 5.30E-17 Rosenband2008



 Einstein’s gravitational redshift

 The idea of “chronometric geodesy”
► Remote clock comparisons to determine gravity potential differences

► Sensitivity: 10-18
 1 cm in height

► Long-range sensitivity to source masses:

 What role for clocks in Earth Science?
► Improve references: global/local geoid models, height of tide gauges, etc.

► Sense geophysical phenomena

U1
U2Clocks for Earth science: sketching the future

10

Chronometric geodesy: clocks for Earth science
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Optical clock comparisons

► An international comparison over continental distance: 1440 km
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Optical clock developements at SYRTE
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Strontium lattice clocks at SYRTE

 Recent studies
 Phase perturbations

 Background gas collisions
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Strontium lattice clocks at SYRTE
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 Low sensitivity to blackbody radiation & electric fields
 At 300 K: -1.6x10-16 ; -2.1x10-18 K-1. Sr/30, Yb/15.

 7 isotopes, 6 with abundance >6%
 2 fermions (17% & 13%), 5 bosons.


199Hg is a fermion with nuclear spin 1/2
 Simpler level structure, no tensor light shift.

 Magic wavelength
 Our 2011 measurement: 362.5697±0.0011 nm.

 High sensitivity of to  variations

 High vapor pressure
 No oven, 2D-MOT possible.

 Unexplored in the laser-cooled regime (2005)
 Still mostly the case.

 Challenges & limits
 Need for deep UV lasers.

 Comparatively high non-linear lattice light shifts (theory).

Optical lattice clock with Hg: motivations

Phys. Rev. A 70, 014102 (2004) Hg, Z= 80
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 Uncertainty
 Limited by statistics

 Lattice light shift

 Measurements
 State-of-the-art measurements against microwave standards (Cs & Rb)

 Hg/Sr optical-to-optical frequency ratio to 1.7x10-16

 One of the very few measured independently in 2 places


199Hg is a secondary representation of the second (2017)

 2017 fiber link campaign
 Hg vs Yb+(E3) PTB: stability down to 2x10-17

Measurements with the Hg optical lattice clock
Effect Correction Uncertainty

2nd-order Zeeman 8.2 4.8

Atom density 5.2 6.4

Background gas 0 2

Lattice light shift linear -4 13.8

Lattice light shift non-linear 6 4

Blackbody radiation 16.1 2.2

Probe light shift 0 0.1

AOM chirp 0.2 0.4

Total 31.7 16.7
in units of 10-17

see Yamanaka et al., PRL 114, 230801 (2015)
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Non-destructive atomic detection

 Destruction of the atomic sample in conventional detection
 Atoms are scattered and lost

 Time spent making a new sample

 Benefits of non-destructive detection
 Classical non-destructivity: Clock dead time reduced, probe time beyond probe

laser coherence time

 Quantum non-destructivity: quantum state preserved after detection, creation
of spin-squeezed atomic states, detection beyond the quantum projection
noise limit

 Principle
 Dispersive phase shift induced by the atomic sample on detection light
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 Last implementation
 Auto aligned dichroic FP cavity

 Finesse: 16000 at 461 nm

 Heterodyne scheme immune to tec. noises

Non-destructive detection in a Sr lattice clock
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