PPP-derived High-Frequency Tropospheric Delays

° " : Leibni
/I e ‘] as a Measure of Atmospheric Turbulence 2| oniversitat
quest Markus Vennebusch!, Steffen Schon® and Ulrich Weinbach'? Hannover

Hnstitut fiir Erdmessung, Leibniz Universitit Hannover, Germany
Center for Quantum Optics and Space Research (QUEST), Leibniz Universitat Hannover, Germany

Effects of atmospheric turbulence on GNSS observations PPP: Zenith tropospheric delays PPP: Carrier phase residuals
Atmospheric turbulence causes refractivity variations that can be observed in different Using specially designed GPS networks, both temporal and spatial characteristics of In addition, refractivity variations can be observed in the raw carrier phase observations
steps of the geodetic data processing. For example, using high-frequency (1 Hz or atmospheric turbulence can be studied. As an example, figure 2 shows the so-called (Wheelon, 2001). Since undifferenced carrier phase observations contain superpositions
more) GNSS carrier phase observations in a PPP analysis, high-frequency atmospheric Seewinkel network of six equally equipped L1/L2-GPS-receivers located along a 16 km of several effects (such as residual receiver clock variations, receiver noise, multipath
effects can be observed as variations of estimated tropospheric zenith path delays or in straight line. Both pseudorange and carrier phase data has been recorded for and turbulence effects) the separation of these effects is a challeging task.
post-fit carrier phase residuals (assuming low receiver noise, a stable receiver clock, and approximately eight hours with a sampling interval of 30 s. In order to investigate the different effects, Seewinkel network carrier phase
no multipath effects). observations (derived from the internal quartz oscillator) have been compared to carrier
A common method to characterise fluctuations of both phase observations ® and Plo Pll P'2 P'4 F;S P1I6 phase observations of |1GS stations connected to hydrogen masers. Fig. 5 and 6 show
tropospheric delay estimates 7" is the (temporal) structure function (as a function of _ examples of PPP post-fit residuals and their temporal structure functions together with
time lag t): ~lkm | | | | estimated receiver clock offsets.
9 Fig. 2: Seewinkel network geometry (6 Leica SR530/520 receivers with choke ring antennas
D ga(t) — <[<I)(ZIZ' ) T CI)(QE T t)] > (]-) with SCIS radomes located along a 16 km straight line, maximum height difference: 10 m). o N e o ot e e

Replacing the time lag t by a spatial distance d yields a spatial structure function.

Using PPP, this data has been processed to derive high-frequency zenith tropospheric

Double-logarithmic plots of structure functions of carrier phases and tropospheric delays path delays (for settings, see Tab. 2). These time series were used to generate temporal b \
typically show straight line segments that reveal the noise type of the corresponding and spatial structure functions shown in figures 3 and 4. The temporal characteristics R T € £ 2
stochastic process. Turbulence models predict a power-law behaviour with exponents shows a power-law behaviour with a smooth transition between exponents of 5/3, 2/3 N I,
(i.e., straight line slopes) ranging from 5/3 to 2/3 and finally 0. and finally 0
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can be developed by using the geometrlcal OptICS apprOX|mat|0n and by mtegratlng 2 - 4N\ = ] Fig. 5: Seewinkel station PO (internal quartz oscillator): PPP carrier phase residuals, their temporal structure functions and
refractivity variations along the line-of-sight from the receiver to the satellite (Wheelon, g o g — estimated receiver clock offsets.
2001). A covariance model for GNSS phase observations (and slant tropospheric delays) O o8l N R
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on the basis of the von Karman turbulence power spectrum has been developed by - | | == 2/3-PL reference| T A B T R Cotmatad el ok ol nr v romoved
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Schon/Brunner (2008) and reads (for parameter descriptions, see Tab. 1): ? epoch (@ 30 [sec] sampling) v Time shift (30 sec] DT rmeshcios e |
, o Fig. 3: Temporal characteristics of PPP tropospheric signal delays. The estimated ZTD deviations show peak-to-peak 0'031:: . - ~ }’\la"\ 4
. 0.31 o B 1 variations of up to 5 mm. The temporal structure functions indicate an initial power-law behaviour of almost 5/3 for the first - 002 N§ 5 e |
<Tj;l(t14), Té (tB)> _ ' . 0 Cr,% < (/fod)gK_l(/‘i()CD le dZQ (2) approximately 10 e_pochs (300 s) and a slope of apprc?ximately 2/3 for_ time shifts of 10 t_o 50 epochs (300 to 1500 s). After %‘: '0‘ «10 n é 0
qin 534 qin 8% 3 approximately 70 epochs (2100 s) the estimated ZTD deviations can be considered as uncorrelated. 5 s :
Equation (2) has to be solved numerically and can be used as a stochastic model for : - : : : : ]
G?\ISS . t( ) veis and for the s mulati y PR v cional path variati The spatial characteristics follows a 2/3-power law behaviour, i.e. the station separation |
ata analysis and for the simulation of tropospheric signal path variations : . . .
y _ _ POSP ghal path v _ is large compared to the effective tropospheric height so that the turbulence process % I S T i | = é ‘; » » |
(Vennebusch et al., 2010). Figure 1 shows simulation examples for a rising satellite. : . . Y T ratonty : :
can be considered as two-dimensional.

Fig. 6: IGS station AMC2 (hydrogen maser): PPP carrier phase residuals, their temporal structure functions and estimated
receiver clock offsets.
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