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Introduction

Atmospheric turbulence: 

- Occurrence: Atmospheric boundary layer

- Chaotic phenomenon caused by:

  - convection (thermal energy exchange, 
air pressure changes, wind shear, …)

  - mechanical obstructions 

- temporal scales: 

  several minutes to (less than) seconds

- spatial scales:

  from several [km] to [mm]

   => high-frequency water vapor variations 

   => refractive index / refractivity variations

   => phase fluctuations of electromagnetic waves
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Introduction

- Refractivity structure function (both temporal and spatial):

- Turbulence theory predicts structure function slopes:

  2/3 spatial and 5/3 temporal power-law behaviour at the beginning, finally 0

Analysis objectives:

1. Modelling physical correlations due to atmospheric turbulence
=> Stochastic model GNSS

 

2. Determination of atmospheric turbulence from phase fluctuations
=> GNSS receivers as 'turbulence sensors'
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Stochastic model
- No deterministic model of atmospheric turbulence possible (Wheelon 2001) 

  => stochastic modelling  

- (Co-)Variance model for tropospheric delays T and phase observations φ 

  (cf. Schön/Brunner, JGeod 82 (10) 2008): 

- known geometry and turbulence parameters => variance-covariance matrix Σ
T
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Symbol Description

T
A

i, Φ
A

i Slant tropospheric delay / carrier phase observation at station A to satellite i

C
n
² Structure constant of refractivity (time and location dependent)

ε Satellite elevation angle

H Height of wet troposphere (approx. 2000 m)

κ
0

Electromagnetic wave number of signal used
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Simulations

→ Simulated slant delay variations follow predicted 5/3-PL-behaviour (closed-loop test)

- simulation of time series via eigenvalue decomposition of Σ
T
:

   G = eigenvectors of Σ
T
, Λ = eigenvalues λ

i
 of Σ

T,
 x = random vector N(0, 1)

 

Example (rising satellite from 10° to 90°):
- 1000 epochs with 10 sec sampling => approximately 3 h
- average turbulence conditions
- peak-to-peak variations: 2 to 4 mm

T=G  x
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PPP results: Overview
Seewinkel network:

- eastern Austria (Burgenland, 47.7 N, 17.E, 160 m ellipsoidal height)

- straight line GPS network with 6 equally equipped stations

  (Leica SR530/520 receivers, Ashtech choke ring antennas with SCIS radomes

- baseline lengths: 1 km to 16 km

- almost equal heights

- 8 hours data, sampling interval: 30 sec

 

IfE-Precise Point Positioning (PPP) software: 

- Kalman filter with backward filtering

- precise ephemeris and 30 s satellite clocks from MIT reprocessing

- zenith tropospheric delays modelled as random walk with system noise 15 mm/√h (large)
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PPP results: temporal ZTD behaviour

Seewinkel  PPP results:

 

Noise-like with random walk contributions, ZTD variations: up to 5 mm

→ Temporal power-law-behaviour of real ZTD: 5/3 (as predicted by turbulence theory)
But: 5/3 power-law is a necessary, but no sufficient condition for turbulence!
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PPP results: spatial ZTD behaviour

→ Spatial power-law-behaviour of real ZTD: 2/3 = 2D turbulence process
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Ultra-stable frequency standards
- Remaining effects in ZTD: 
  Multipath, receiver clock effects, receiver noise, turbulence effects, …
 

- stable oscillators enable enhanced clock modelling (Weinbach/Schön 2011)
 

- Kalman filter clock system noise from Allan variance parameters
 

- improved separability (of receiver clock and tropospheric delays)  

=> Clock modelling transfers high-frequency effects into ZTD

AMC2
black = no clock modelling
red = clock modelling



Vennebusch M. et al.: Determination of Determination of refractivity with GNSS variations Slide 10

Summary & Conclusions
General:

- atmospheric turbulence acts (de-)correlating and should be (and can be) modelled
 

Simulations:

- realistic simulations of turbulence/tropospheric delays possible => full VCM
 

Real data:

- structure functions of PPP-ZTDs show temporal power-law-behaviour:

  - initial 5/3 power-law temporal behaviour for approx. first 5 minutes

  - 2/3 power-law spatial behaviour (for 16 km network)
 

Ultra-stable frequency standards:

- clock modelling transferes high-frequency effects to ZTD parameters 

  => improves separability

- detection of atmospheric turbulence requires further investigations on remaining effects 
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