

l l Leibniz l o 2 Universität to o 4 Hannover

# Geodetic-geophysical Monitoring of Sinkhole Instabilities -Results of SIMULTAN Campaigns from 2015 to 2017

- Geodetic Week 2017 -

Session - Environmental Monitoring and Remote Sensing



*T. Kersten*<sup>1</sup>, L. Timmen<sup>1</sup>, S. Schön<sup>1</sup>
 A. Weise<sup>2</sup>, G. Gabriel<sup>2</sup>, D. Vogel<sup>2</sup>

<sup>1</sup>Institut für Erdmessung, Leibniz Universität Hannover <sup>2</sup>Leibniz Institut für Angewandte Geophysik (LIAG)

Tobias Kersten et al. | Thursday, September 28th, 2017





### Motivation - Research on Sinkholes / Subrosion Events



Schmalkalden 2010 © TULG



Nordhausen 2016 © MDR/Robert Müller

### Sinkhole Events in Germany

- sinkhole events mostly in depths of 100-150 m, diameters approx. 30 m and 50 m deep
- soluble rocks, subsidence and dissolution of gypsum and anhydrite
- no predictable processes (complex interaction of different factors)
- example Thuringia: approx. 30-40 events annually, (200 since 2016)





# SIMULTAN - Multi-Disciplinary Joint Research Project

### SIMULTAN

Sinkhole Instability: Integrated MULTi-scale Monitoring and ANalysis



### **Key-Parameter**

- early recognition concept (different scales: time, lateral extent and depth)
- rigorous combination of geodetic and geophysical techniques and data sets
- integrated data sets of subsurface mechanics and surface deformations by collocated and co-located stations
- innovative methods of urban geodetic/geophysical monitoring strategies









### **Complex Process Models Require Integrated Methods**



<sup>©</sup> Krawczyk and Dahm 2014





### **Complex Process Models Require Integrated Methods**







## **GNSS Network Processing - Hamburg, Groß Flottbek (HHX)**

### Geodetic Datum (for all Working packages)

 SAPOS<sup>®</sup> 2016 (December 1<sup>st</sup>, 2016) with GCG2016 for consistent combination of mathematical and physical heights (consistent combination of GNSS, gravimetry and levelling)

### Continuous GNSS (GPS/GLONASS) campaigns (09/2015 - 09/2017), star-like network

- local reference: DESY (HHDE), fixed controlled by several (3) SAPOS<sup>®</sup> stations (ionosphere free linear combination)
- five campaigns (finished 09/2017), processed as L1-solution

### Investigations and related studies on GNSS processing

- Galileo at challenging urban environments [Kersten und Schön, 2017a]
- Dynamic & adaptive elevation masks to improve challenging satellite geometry dynMask ([Kersten und Schön, 2017b]
- Permanent high-sensitive and low-cost units in urban environments (street furniture, smart cities, ...)





## Multi-Technique Monitoring Network in Hamburg Groß-Flottbek



© LIAG & IfE, (Weise et al. 2017)





# Multi-Technique Monitoring Network in Hamburg Groß-Flottbek

# **GNSS Network**

- Repeatability of individual sessions (L1 solution):
  - North/East: 0.8 1.5 mm,
  - Up: 0.8 3.5 mm
- Local reference stable (L3 solution)

## Levelling Network

Precision: < 1 mm in 7 campaigns</p>

# **Gravity Network**

- 13 gravity differences out of 8 stations
- ± 35 50 nm/s<sup>2</sup>

# Absolute Gravimetry

- annually, control network stability
- precision: ±16 nm/s<sup>2</sup>



© LIAG, IfE 2017



© LIAG, 2017





### Stability of Local Reference and Repeatability of Network Points



### **Epoch Comparison and Validation**

- new SAPOS<sup>®</sup> Datum on Dec 1<sup>st</sup>, 2016: offsets in height component of up to 20 mm
- Epoch comparisons confirm very robust consistency of < ±2 mm in horizontal and up component (common Datum: DHHN2016)





## Levelling and GNSS

### Levelling network

- Subsidence at Flottbek Markt (confirmed by benchmark RF5303) and Wobbe See, change: -1 mm/a
- Seasonal variations, further surveys required







### Comparison to GNSS

- Consistent trend of subsidence for HH05-HH03 (first epoch comparisons, not significant)
- Seasonal variations detectable, further investigations required to separate superimposed signals
- Further steps: integrated data model



# Levelling and GNSS

### Levelling network

- Subsidence at Flottbek Markt (confirmed by benchmark RF5303) and Wobbe See, change: -1 mm/a
- Seasonal variations, further surveys required

### Comparison to GNSS

- Consistent trend of subsidence for HH05-HH03 (first epoch comparisons, not significant)
- Seasonal variations detectable, further investigations required to separate superimposed signals
- Further steps: integrated data model















- ▶ FG5X-220 ( $s \approx 0.02 \, \mu {\rm m/s^2}$ ) to control and confirm gravity level Datum
- Reducing earth tides and air pressure gravity changes

### **Relative Gravimetry**

- Gravimeter instruments used in campaigns
  - Scintrex CG3, CG5
  - LaCoste & Romberg
- Step method to control drift of spring gravimeters



gravity local tie measurement



levelling mark to gravity tie

### **Findings: Absolute Gravimetry**

- Increase of gravity: 50 nm/s<sup>2</sup> ± 22 nm/s<sup>2</sup>
- Consistent with effects in observed gravity differences
- Induced by hydrological variations at subsurface station DESY







## **Absolute and Relative Gravimetry**

### **Relative Gravity Network**

- Precision of network: ±10 nm/s<sup>2</sup>
- Temporal variations of gravity differences (up to 120 nm/s<sup>2</sup>)
- Correlation of seasonal and local hydrological variations: soil water (GLDAS) and ground water (≈0.5 m water column), partly due to topography/subsurface station







## **Absolute and Relative Gravimetry**

### **Relative Gravity Network**

- Precision of network: ±10 nm/s<sup>2</sup>
- Temporal variations of gravity differences (up to 120 nm/s<sup>2</sup>)
- ► Correlation of seasonal and local hydrological variations: soil water (GLDAS) and ground water (≈0.5 m water column), partly due to topography/subsurface station







### **Summary and Outlook**

### Integrated multi-technique monitoring network

- Ongoing campaigns observe and monitor focus areas (levelling and gravimetry)
- Quantitative interpretation of gravity changes and deformations
- Combination of GNSS and levelling confirm subsidence processes

### Challenges and further work

- Integrating of data sets (gravimetric, GNSS, levelling, borehole extensometer, seismic)
- Separating significant signals from noise requires longer time series
- Re-processing historical levelling data
- Surface deformation by imaging methods (e.g. InSAR, DInSAR)
- Re-processing of monitoring networks with Galileo





 Toblas Kersten

 Institut für Erdmessung

 Schneiderberg 50

 D-30167 Hannover, Germany

 phone
 + 49 - 511 - 762 5711

 fax
 + 49 - 511 - 762 4006

 web
 http://www.ile.uni-hannover.de

 mail
 kersten@ile.uni-hannover.de





#### Acknowledgement

This work was funded through the Ministry of Education and Research (grant 03G0843D).





### References



ī.

Kersten, T. und Schön, S. (2017a). Galileo for GNSS-Monitoring Networks in Urban Environments. In Proceedings of Ingenieurgeodäsie 17 - 18 Internationaler Ingenieurvermessungskurs, April 25.-29., Graz, Austria. DOI: 10.13140/RG.2.2.23052.10887.

Kersten, T. und Schön, S. (2017b). GNSS Monitoring of Surface Displacements in Urban Environments. In Lienhardt, W. (Hrsg.), Ingenieurvermessung '17. Beiträge zum 18. Internationalen Ingenieurvermessungskurs Graz, Seiten 415–426. Wichmann Verlag, Berlin/Offenbach, Germany. ISBN: 978-3-87907-630-7.





## **GNSS Campaign - L1-Solution of Monitoring Network**



### **GNSS-Monitoring Network**

- combined GPS/GLONASS solution optimal w.r.t. GPS only solution (L1-Solution)
- GLONASS improves observations under challenging sky distribution
- height component most challenging parameter the effort of using FG-ANA100B and individual antenna calibrations is mandatory and justified





### **Comparison of GNSS and Levelling Heights**

### Cross-checks between GNSS-heights and Levelling

- proving GNSS-height determination using relative height differences (w.r.t. #GRAV10)
- comparing different measurement-techniques (Levelling vs. GNSS)
- validating ongoing data integration, combination and later modelling of subsurface processes

| Number | Name   | NHN92 Height<br>[m] | GNSS Height<br>[m] | $\Delta$ Levelling [m] | $\Delta GNSS$ [m] | $\Delta \text{GNSS} - \Delta \text{Levelling}$ [mm] |
|--------|--------|---------------------|--------------------|------------------------|-------------------|-----------------------------------------------------|
| 1      | GRAV01 | 140.2861            | 185.8377           | -1.037                 | -1.039            | -1.34                                               |
| 2      | GRAV02 | 143.7469            | 189.2970           | 2.424                  | 2.421             | -2.81                                               |
| 3      | GRAV06 | 132.7434            | 178.2935           | -8.580                 | -8.583            | -2.89                                               |
| 4      | GRAV10 | 141.3234            | 186.8763           | 0.000                  | 0.000             | 0.00                                                |
| 5      | GRAV11 | 140.2651            | 185.8193           | -1.058                 | -1.057            | 1.28                                                |
| 6      | GRAV12 | 152.9325            | 198.4901           | 11.609                 | 11.614            | 4.66                                                |

### Cross-checks

- ► GNSS-heights correspond with ±3 mm to levelling heights
- GRAV12 shows significant variation in height component (challenging visibility and geometry at this marker)