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Introduction

This contribution discusses the current investigations at the Institut für Erdmessung (IfE) on
Code Phase Variations (GDV) within a combined code and carrier phase processing strategy. An
analysis of the GDV impact on the important Melbourne-Wübbena linear combination
(MW-LC) - which is widely used for cycle slip detection and ambiguity resolution - is of special
interest since effects which origin from GDV are amplified on both code phases (P1 and P2).

GNSS Receiver Antenna Code Phase Variations (GDV)

Variations of the Code Phase Observation at GNSS Antennas?
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Figure 1: Methodology and principle concept (a) of the Hannover Concept of absolute
antenna calibration in the field (b) used in an experimental GDV setup.

I ideal An isotropic radiator for
the reception of code phase
observation independent of
incident angle.

I real Systematic effects occur
due to imperfections during
the design and production
process of the important
characteristics of GNSS
antennas (sensitivity etc.).

The effect of azimuth and elevation dependent GDV is currently known in literature for satellite
as well as for receiver antenna, cf. [Murphy et al., 2007], for example.

Review Melbourne-Wübbena Linear Combination (MW-LC)

Lw =
f1

f1 − f2
L1 −

f2
f1 − f2

L2

Pw =
f1

f1 + f2
P1 +

f2
f1 + f2

P2

MW = Lw − Pw = λw(N1 − N2)

Code and carrier observations denoted by Pi and Li resp., fi
is the frequency and λw=0.86 m the Widelane wave length.

I GDV amplified by a factor of 0.562 (f1) and
0.438 (f2), standard GPS L1 and L2 frequencies

I accumulation of GDV for MW-LC and for
different frequencies

I degradation of observation precision and
additional uncertainties in coordinate domain

Experiment on Laboratory Network

(a)

(b)

Figure 2: Experimental Setup at the IfE Laboratory network, (a) ASH700700.B
NONE and (b) LEIAR25.R3 LEIT.

Experimental Setup
I common clock mode on a short

baseline
I long sessions (>5 hours) ensure

a good geometry (satellite
coverage)

I asymmetrical setup with
antennas providing different
GDV pattern, determined by
IfE, [Kersten et al., 2012]
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(a) GDV P1
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(b) GDV P2
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(c) GDV P1
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(d) GDV P2
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Figure 3: GDV for Ashtech Marine Antenna (ASH700700.B NONE) in (a-b) and for Leica AR25 (LEIAR25.R3 LEIT) in (c-d).

Observation Domain - Double Differences of MW-LC

Reference PRN01 Reference PRN32
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Figure 4: Double Differences of Melbourne Wübbena Linear Combination for two different reference satellites, (a-b) and (e-f) correspond to
reference satellite PRN01 whereby (c-d) and (g-h) correspond to reference satellite PRN32; GDV correction is shown by the solid line.

Widelane Ambigutiy Fixing

Reference PRN01 Reference PRN32
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Figure 5: Differences of WL ambiguity fixing induced by GDV corrections for situation of reference satellite PRN01 (a) and PRN32 (b).

Coordinate Domain - DD Lw Solution with reference PRN01 and PRN32
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(c) GDV applied
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Figure 6: Double Difference Coordinate Solution using Widelane Phase and Ambiguities obtained without GDV correction (a-b) and with
GDV correction (c-d) and identical observation weighting.

Narrowlane and N1 Ambiguity Fixing - Reference PRN32
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Figure 7: Wrong Widelane ambiguity introduces wrong Narrowlane ambiguity in (a) and can be repaired using GDV corrections (b).

Impact on Coordinate Domain - Reference PRN32
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Figure 8: Double Difference L1 phase solution and original MW-LC ambiguities (a-b) and GDV-repaired MW-LC ambiguities (c).

Conclusions

Code Phase Variations (GDV)
I Significant and repeatable GDV depending on the antenna design are obtainable (Fig. 3).
I GDV can reach magnitudes of ≥ λi per frequency i and the effect on DD of MW-LC depends

also on the selected reference satellite and the processing strategy, cf. Fig. 4.

Observation Domain
I GDV induce wrong Widelane ambiguities (up to 1 cycle) as shown in Fig. 5.
I Wrong Widelane ambiguity introduces wrong Narrowlane ambiguity, cf. Fig. 7.

Coordinate Domain
I GDV influence directly and repeatable the coordinate time series via incorrectly fixed WL

ambiguities and induce jumps of up to 0.4 m (cf. Figure 8(b) & 8(a)).

Outlook and Challenges
I GDV are interesting for future GNSS signals since a reduced observation noise can be

expected and will be an important element in navigation approaches with small antennas.
I GDV degrade code based and code/carrier combined applications.
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