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Abstract.  The upcoming GOCE satellite mission is 
expected to map the Earth’s gravity field with un-
precedented accuracy.  Besides the instrument cali-
brations on the ground and in orbit, there is a need 
to check the calibration throughout the two mea-
surement phases without direct interference with 
the satellite operation.  One promising method for 
the validation and calibration of GOCE data is the 
use of ground gravity data from some well-sur-
veyed areas, upward continued to satellite altitude. 

The least squares spectral combination technique 
is applied to the computation of gravity gradients in 
space.  The necessary methodology is developed, 
and an error analysis is performed considering the 
errors in the terrestrial gravity data and the global 
geopotential model.  The results show that accura-
cies at the level of a few mE (1 mE = 10-3 E, 1 E = 
10-9 s-2) are possible.  The practical computations 
are based on the gravity and terrain data collected 
within the framework of the European Geoid Pro-
ject.  The contribution of each of the data sets in-
volved in the combination process (gravity, terrain, 
global model) is discussed.  Further numerical stud-
ies are presented regarding the effect of the satellite 
altitude, the resolution of the input data, the integra-
tion radius, the global geopotential model em-
ployed, and the use of terrain data.  The results 
suggest the use of a high-degree global model, 
terrain information to avoid aliasing effects, a data 
resolution of 5´ to 10´, and a sufficiently large 
integration radius (≥ 5°) for accuracies of a few mE. 
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1 Introduction 
 
The GOCE gravity field mission aims at providing 
an improved global geoid with an accuracy of 
0.01 m at a spatial resolution of about 100 km, and 
a corresponding gravity accuracy of 1 mgal (ESA, 
1999).  For this purpose, a three-axis gravity gradi-
ometer and high-low satellite-to-satellite-tracking 
from GPS satellites are combined to derive the 

gravity field information.  Due to limitations in the 
performance of the accelerometers, the envisaged 
gradiometer accuracy of 4 mE/√Hz is limited to the 
measurement bandwidth of 5 to 100 mHz.  Besides 
the instrument calibrations on the ground and in 
orbit, there is a need to check the calibration 
throughout the two measurement phases without 
direct interference with the satellite operation.  One 
promising method for the validation and calibration 
of GOCE data is the use of ground gravity data from 
some well-surveyed areas, upward continued to sat-
ellite altitude (e.g., Arabelos and Tscherning, 1998). 

This contribution focuses on the computation of 
the vertical gravity gradients.  The calibration of the 
GOCE data itself is not discussed here.  The meth-
odology used is described in Section 2, which is 
based on the least squares spectral combination 
technique in conjunction with a remove-restore pro-
cedure.  An error study is provided in Section 3, 
considering the errors in the terrestrial data and the 
global geopotential model.  The truncation error, 
resulting from a limited integration in a local cap, is 
also discussed.  In Section 4, the numerical experi-
ments are described.  They are based on gravity and 
terrain data collected within the framework of the 
European Geoid Project.  The numerical studies are 
concerned with the contribution of the individual 
data sets to the final solution, the input data resolu-
tion, as well as the effect of the satellite altitude, the 
terrain data, and the global geopotential model. 
 
2 Methodology 

 
The least squares spectral combination technique 
(Wenzel, 1981; Sjöberg, 1980) is used for the com-
putation of gravity gradients at satellite altitude.  For 
the Earth’s disturbing potential, T, the spherical har-
monic series representation is adopted in the form 
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where (θ,λ,r) are the spherical coordinates (polar 
distance, longitude, radius), GM is the geocentric 
gravitational constant, a is the semi-major axis of 
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the reference ellipsoid, lmlm SC ∆∆ ,  are the fully 
normalized potential coefficients, )(cosθlmP are the 
fully normalized associated Legendre functions, 
and l,m are the degree and order of the expansion.  
Equation (1) can be re-written by introducing a 
mean Earth radius R and the disturbing potential 
surface harmonics Tl (referring to R): 
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The gravity anomalies, serving as the primary input 
data in this study, are related to the disturbing po-
tential T by the fundamental equation of physical 
geodesy.  In a spherical approximation, this reads 

l

l

l
l

l

l
g

r
RT

R
l

r
RT

rr
Tg ∆







=
−








=−
∂
∂

−=∆
+∞

=

+∞

=
∑∑

2

2

2

2

12 , (4) 

where  are the gravity anomaly surface harmon-
ics.  Equation (4) can be inverted using the orthogo-
nality relations and a constant radius (r=R) ap-
proximation, yielding 
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From Eq. (5), Stokes’s formula can be derived by 
summing up all surface harmonics Tl for degrees 2 
to ∞ and by subsequent division with normal grav-
ity γ (i.e., Bruns’s formula). 

There is now the possibility to derive the surface 
harmonics of the disturbing potential from two dif-
ferent data sources, namely from the coefficients of 
a global geopotential model via Eq. (3), and from 
gravity anomalies via Eq. (5).  In the spectral com-
bination technique, both quantities are combined 
using spectral weights wl, depending on the 
degree l.  After introducing the indexes M for the 
global model and G for the terrestrial gravity 
anomaly component, the combination solution for 
the disturbing potential surface harmonic can be 
written as 
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The spectral weights for the two input data sets can 
be determined empirically, e.g., by filters suggested 
in Haagmans et al. (2002), or by least squares ad-
justment or collocation techniques, which take into 
account the given error estimates of the spectral 
components Tl

M and Tl
G.  For the least squares ad-

justment solution, the spectral weights for the 

gravity anomaly component are obtained by 
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where  and  are the error degree 
variances for the geopotential model and the terres-
trial gravity data, respectively, which can be derived 
from the potential coefficient standard deviations 
and an error covariance function of the gravity data 
(for details see, e.g., Wenzel 1982). 
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The sum of the spectral weights is expressed by 
GM

l wws += , (8) 

yielding sl = 1.0 for the empirically determined 
weights and for the least squares adjustment solu-
tion, and sl ≤ 1.0 for the collocation solution due to 
the smoothing property inherent in this method. 

Combining Eqs. (6) and (8) in the form 
, while dropping the index G, gives the 

following result for the combined disturbing 
potential surface harmonics: 
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The major advantage of rewriting the surface har-
monic terms in the above equation is, that this basi-
cally results in a remove-restore procedure, i.e. the 
first part of Eq. (9) is the usual geopotential model 
component (for sl = 1.0), and the second part con-
tains the difference between the terrestrial gravity 
anomaly and the global model component.  This 
yields significant advantages in the numerical 
evaluation, because the difference terms average out 
at larger distances (see also below).  Summing all 
combined surface harmonics T  according to Eq. (2) 
for degrees 2 to ∞ yields the final disturbing 
potential .  However, as this study is 
primarily dealing with the computation of gravity 
gradients, and due to space restrictions, the complete 
formulas for T  are not presented here. 

l̂

GM TTT ˆˆˆ +=

ˆ

The gravity gradients, i.e. the second derivatives 
of T, are derived in a (x,y,z) local spherical Carte-
sian coordinate system (north, east, radial).  All six 
gravity gradients (Txx, Txy, Txz, Tyy, Tyz, Tzz) are 
needed in order to be able to compute the gravity 
gradients in any rotated coordinate system by the 
equation Tij

R = R Tij RT, where R is the rotation 
matrix.  In this study, however, the investigations 
are restricted to the radial (vertical) gravity gradients 
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as this is the most dominant and important compo-
nent.  Applying Eq. (10) to the combined disturbing 
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with the usual vertical gravity gradient from the 
global geopotential model (for sl = 1.0) 
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In this Section, error estimates for the gravity gra-
dients are provided.  The computations are based on 
Eqs. (11) to (14) and take into account the errors in 
the terrestrial gravity data and the global model.  
Furthermore, the truncation error, resulting from a 
limited integration of Eq. (13) out to a spherical 
distance ψmax only, is discussed.  In this study, three 
different sets of spectral weights and their corre-
sponding integral kernels are considered (Fig. 1). 

and the gravity anomaly contribution 
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The first set of spectral weights (case A) is identi-
cal with the data set used to develop the EGG97 
geoid model (Denker and Torge, 1998).  It is based 
on the EGM96 coefficient errors, a 2 mgal standard 
deviation (std.dev.) of the gravity anomalies, and a 
simple distance-dependent correlation model in the 
form r(ψ) = exp (-4ψ [°]).  The spectral weights 
were derived from a least squares adjustment solu-
tion according to Eq. (7).  The 2 mgal std.dev. for 
the terrestrial data was chosen from extensive tests 
in order to retain at least the longest wavelengths of 
the EGM96 model in the combination solution, 
which was not the case with a 1 mgal std.dev.  The 
second set of spectral weights (case B) uses the 
EIGEN-1S coefficient standard deviations (Rev. 1 
error estimates, Reigber et al., 2002) and, in this 
case, a 1 mgal standard deviation for the gravity 
anomalies, with the same correlation model as 
above.  The weights were again derived by the least 
squares adjustment technique.  On the other hand, 
the weights for case C are based solely on empirical 
estimates, using a cosine-taper function between 
degrees 40 and 50. 

with the integration kernel 
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where r is now the computation radius for the 
gradients (i.e., the radius to satellite altitude), and ψ 
is the spherical distance.  Again, a constant radius 
approximation is used.  From Eq. (13), the effect of 
rearranging the terms according to Eq. (9) becomes 
clear, resulting in a remove-restore procedure, 
which can also be extended to the inclusion of ter-
rain effects.  The major advantage is, that ∆g-∆gM 
in Eq. (13) is a small quantity that averages out at 
larger distances, allowing the truncation of the 
integration to a local cap.  Furthermore, if the 
gravity anomalies ∆gM in Eq. (13) are computed 
from a high-degree global geopotential model in an 
exact way or using ellipsoidal approximations, the 
use of spherical and constant radius approximations 
for the residual quantities in Eqs. (11) to (14) is 
clearly justified. 

The truncation error for the three integral kernels 
described above was derived using the frequency 
transfer function introduced by Wenzel (1982).  
Due to space restrictions, the formulas are not pre-

 

 
 

 
 Fig. 1. Spectral weights (left) and corresponding integral kernels for Trr (right) for cases A,B,C. 



 

sented here, but only some numerical results are 
given.  The RMS truncation error significantly de-
pends on the maximum degree of the global model 
used.  If EGM96 is used up to degrees 36, 180 and 
360, respectively, the RMS truncation error for ker-
nel A is 11.4, 2.5 and 2.1 mE for a truncation radius 
of ψmax=5°, while these values reduce to 3.2, 0.5 
and 0.4 mE for ψmax=10°, and to 0.8, 0.1 and 
0.1 mE for ψmax=15°.  Corresponding results are 
available for cases B and C.  Thus, with a suffi-
ciently large integration radius, the truncation errors 
can be kept well below the 1 mE level. 

Based on Eqs. (9) and (11), the error estimates 
for the computed gravity gradients can be derived 
by straightforward error propagation.  The error 
covariance function is given by 
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with the error degree variances of the combined 
disturbing potential 
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Table 1 shows the signal and error components 
for the Trr gradients, based on EGM96, as well as 
the error estimates based on the spectral combina-
tion technique (i.e., combining EGM96 and the ter-
restrial gravity data using kernel A).  For the latter 
case, error estimates are provided for correlated 
(see above) and uncorrelated gravity anomaly 
errors; the assumed anomaly accuracy is 1 or 0.25 
mgal.  The total error (bottom line in Table 1) and 
the contributions from different spectral bands are 
provided.  All values in Table 1 refer to a satellite 

altitude of 250 km.  The EGM96 signal is about 250 
mE with an error estimate of about 20 mE.  For the 
spectral combination solutions, the error estimates 
from the correlated and uncorrelated input gravity 
data do not differ very much.  For a 1 mgal accuracy 
of the gravity data, the total error is 2.8 mE and 
2.4 mE for the correlated and uncorrelated gravity 
data, respectively.  In both cases, the major error 
contribution comes from degrees less than 50.  
However, this situation will improve with the 
CHAMP and GRACE missions, and therefore the 
total error is also given for a global model perfect up 
to degree 50 (values are marked by an asterisk).  For 
a more optimistic scenario with a 0.25 mgal anom-
aly accuracy, the total accuracy is 1.6 mE for both 
the correlated and uncorrelated case, with the 
dominant contributions again coming from the 
errors of the global model (below degree 50).  Thus, 
sub-mE accuracies are only possible with signifi-
cantly improved global Earth models and very accu-
rate terrestrial data.  From Table 1 it is also evident 
that the gradient signal above degree 180 is quite 
weak, which makes the recovery of such terms 
difficult. 

Table 1. RMS signal and error estimates for Trr at 250 km satellite altitude. Units are mE. 
 
Degree 
Range 

EGM96 
Signal 

EGM96 
Error 

Spectral Combination 
Kernel A 

EGM96 + Correlated ∆g 

Spectral Combination 
Kernel A 

EGM96 + Uncorrelated ∆g 
   σ∆g = 1 mgal σ∆g = 1/4 mgal σ∆g = 1 mgal σ∆g = 1/4 mgal 
2-18 184.2 1.3 0.8  0.7  0.8  0.7  
19-36 115.7 5.8 1.7  1.2  1.6  1.2  
37-50 88.4 8.7 1.4  0.6  1.1  0.6  
51-90 90.4 13.9 1.5  0.4  1.0  0.3  
91-180 31.5 7.9 0.6  0.2  0.4  0.1  
181-360 1.4 0.6 0.0  0.0  0.0  0.0  
> 360 - - 0.0  0.0  0.0  0.0  
2-∞ 253.6 19.1 2.8 

1.7 
 
* 

1.6 
0.4 

 
* 

2.4 
1.1 

 
* 

1.6 
0.3 

 
* 

* perfect global model up to degree 50 

 
4 Numerical Experiments 
 
The numerical results presented in this Section are 
based on the terrestrial gravity and terrain data col-
lected within the framework of the European Geoid 
Project (Denker and Torge, 1998).  However, for 
this study, the detailed grids were merged to 5´×5´ 
grids.  The combination of the terrestrial gravity and 
terrain data with a global geopotential model is 
based on the spectral combination technique in 
connection with a remove-restore procedure as 
described in Section 2.  The integral formulas were 
evaluated by 1D FFT techniques.  EGM96 is used to 

 



 

provide the long wavelength gravity field compo-
nents, while the topography is taken into account 
using the residual terrain model (RTM) reduction 
procedure with a 15´ moving average filter for the 
construction of the reference topography. 

Table 2 shows the statistics of the relevant 
gravity field parameters, where the superscript M 
stands for the global model, and T stands for the 
topographic component.  All gravity gradient com-
putations refer to a satellite altitude of 250 km.  The 
RMS of the residual gravity anomalies is 11.6 mgal.  
The direct vertical gravity gradient contribution 
from the terrain is very small due to the RTM 
method (0.6 mE RMS, 4.3 mE max.), while the 
contribution from the terrestrial gravity data is 
23.7 mE RMS (about 200 mE max.), and the largest 
contribution comes from the global model (about 
300 mE RMS and 1.5 E max.).  Figures 2 and 3 
show the contribution of the terrestrial gravity data 
and the final vertical gravity gradients over Europe. 

The effect of the satellite altitude on the results 
was studied by repeating the above calculations for 

a satellite altitude of 260 km, followed by differenc-
ing the 250 km and 260 km results.  Table 3 shows 
the statistics of all relevant components.  Again, the 
largest contribution to the differences is coming 
from the global model (15.4 mE RMS), while the 
corresponding value for the terrestrial gravity data is 
only 1.9 mE RMS. 

Further studies were performed regarding the in-
put grid size.  For this purpose, the 5´×5´ grids were 
averaged to coarser grids, and then the gravity gra-
dients were re-computed again, followed by an 
interpolation to the nodes of the detailed grid and a 

 

Fig. 3. Final gravity gradients T aTM′ zzzzzzzz TTT ++= t
250 km satellite altitude. Units are mE. 

Fig. 2. Residual gravity gradients T  at 250 km satellite
altitude, computed from the terrestrial gravity data. Units
are mE. 
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Table 2. Statistics of the gravity field components involved in the remove-restore procedure. The gravity gradient 
components refer to a satellite altitude of 250 km. 
 
Parameter  Mean Std.dev. RMS Min. Max. 

TM gggg ∆−∆−∆=′∆  [mgal] 0.25 11.60 11.60 -168.87 194.82 

zzT ′  [mE] 0.0 23.7 23.7 -194.8 130.3 
(EGM96)zz

MT  [mE] 117.8 285.3 308.7 -1466.3 985.1 
(RTM)TTzz  [mE] 0.0 0.6 0.6 -3.0 4.3 

T
zz

M
zzzzzz TT +TT +′=  [mE] 117.8 285.8 309.2 -1447.0 963.2 
 
Table 3. Statistics of the differences between gravity 
field components computed at 250 km and 260 km 
satellite altitude. Units are mE. 
 
Parameter Mean RMS Min. Max. 

zzT ′δ  0.0 1.9 -16.5 13.9 
(EGM96)zz

MTδ  1.2 15.4 -105.2 79.9 
(RTM)TTδ zz  0.0 0.1 -0.5 0.6 

zzTδ  1.2 15.6 -102.6 80.7 



 

 

comparison.  The differences exceeded about 1 mE 
RMS for grid sizes larger than 15´; in this case, 
however, the maximum differences reach 15 to 20 
mE.  Thus, a grid size of 5´ to 10´ is preferable for 
highest accuracies. 

Furthermore, the contribution from different inte-
gration radii was studied, with the results being 
strongly dependent on the integration kernel used 
and the magnitude of the signal, which is passed 
through that kernel.  For kernel A and EGM96 
complete to degree 360, the contribution from the 
zones outside ψ > 10° is less than 1 mE RMS 
(2 mE max.), while for kernel B and EIGEN-1S 
(Reigber et al., 2002) to degree 119, the corre-
sponding values are 1.9 mE RMS (8 mE max.).  
Thus, the employment of a high-degree geopoten-
tial model is advantageous, and a sufficiently large 
integration radius is required to keep the truncation 
error below acceptable limits. 

The use of terrain information is twofold.  As was 
shown above, the direct effect is very small for the 
RTM method.  Nevertheless, terrain data plays an 
important role in the process of gravity anomaly 
gridding.  To study this effect, the 5´×5´ input grav-
ity anomaly grid was re-computed by simple aver-
aging of the anomalies without taking into account 
any terrain information.  It is well known that such 
a procedure is significantly affected by aliasing 
errors and yields strongly biased results.  This is 
especially valid in the mountains, as the observa-
tions are usually made along roads in valleys, and 
are thus not representative for the area.  The anom-
aly differences between the two grids reach about 
10 mgal RMS (max. > 200 mgal), which transforms 
into corresponding gradient differences of 43 mE 
RMS (max. 600 mE over the Alps).  Thus, the re-
sults without considering any terrain information in 
the gravity gridding process render the technique 
completely useless in mountainous areas. 

The use of the global geopotential model was the 
final topic that was investigated.  As well as 
EGM96, EIGEN-1S was also tested.  Since 
EIGEN-1S is a satellite-only model with full power 
only up to about degree 36, test solutions with the 
EIGEN-1S augmented by EGM96 above degree 36 
were also computed.  Comparison of the relevant 
gradient solutions again showed that it is advanta-
geous to use a high-degree model, i.e. the EIGEN-
1S + EGM96 results were superior to the pure 
EIGEN-1S results.  One reason for this may be that 
approximation and linearization errors (constant 
radius approximation, etc.) are significantly reduced 
for a high-degree reference model.  The RMS dif-
ference between the EGM96 and the EIGEN-1S + 

EGM96 combined gravity gradients was 3.9 mE 
(15 mE max.), and the differences show purely long 
wavelength structures, as expected. 
 
5 Conclusions 
 
Vertical gravity gradients Trr were computed over 
Europe based on the gravity and terrain data from 
the European Geoid Project.  The spectral combina-
tion technique was applied.  The integral formulas 
were evaluated by 1D FFT, which is an efficient 
tool for production work.  The error studies show 
that accuracies at the few mE level are possible in 
areas with a good gravity coverage and accuracy.  
The numerical experiments suggest to use a data 
grid size at the 5´ to 10´ level, an integration radius 
larger than 5°, terrain reductions to avoid/reduce 
aliasing effects, and a high-degree geopotential 
model as a reference field to reduce linearization 
and approximation errors.  Computation of the full 
gravity gradient tensor is planned for the future. 
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