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Motivation

I Low Earth Orbiters (LEO): satellites in altitudes up to 1000 km used for Earth observation
I Equipped with many different sensors, positioning and timing are mandatory
I Both is achievable by using GNSS signals
I Uncertainties in the orbit positions directly transfer into the end-products
I Methods for Precise Orbit Determination (POD): reduced-dynamic or kinematic orbits

The GRACE mission

I GRACE: Gravity Recovery And Climate Experiment, launched in 2002 and still in orbit
I Two identical LEOs at ca. 360 km height (in end of March 2016)
I Selection of sensors on-board: star cameras, L1/L2 GPS antenna, BlackJack L1/L2

dual-frequency codeless GPS receiver, Ultra Stable quartz Oscillator (USO)
I GPS raw observations are pre-processed by the Jet Propulsion Laboratory (JPL)
I GRACE positions available from reduced-dynamic orbit done by JPL (Wu et al., 2006)

A method for kinematic GRACE orbits

I Using P-Code and phase observations on both GPS frequencies L1 and L2
I Ionosphere-free linear combinations P3 and L3 to eliminate 1st order of ionospheric delay
I Using high precision GPS satellite orbits and satellite clocks from IGS analysis center CODE
I Precise Point Positioning (PPP) in a batch Least-Squares Adjustment (LSA)
I Observations corrected by PCOs and PCVs, relativistic effects and phase wind-up (PWU)
I Near-field multipath cannot be modeled and subtracted from the observations, therefore it

stays as an error source
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Figure 1: Typical Allan deviations of some
chosen high-precision oscillators

I We make use of a concept called GNSS Receiver
Clock Modeling (RCM)

I RCM in LSA: approximating the behavior of the
GPS receiver clock through piecewise linear
polynomials

I The coefficients of the polynomials are time offsets
oi and frequency offsets δfi

I The length ∆t = (t − ti) of one polynomial part
(the clock modeling interval) is restricted by the
frequency stability of the oscillator

I Receiver clock error δti = oi + δfi · (t − ti)
I RCM is feasible as long as the Allan deviation of

the oscillator is smaller than the white noise of
GNSS phase observations (cf. figure 1)

I GRACE GPS receiver is driven by the USO, maximum value of ∆t is 60 s

I For CHAMP Montenbruck and Kroes (2003) found that
cross-talk between the main GPS antenna and the GPS
occultation antenna causes a multipath-like pseudorange
error in the aft half of the main antenna, when the
occultation antenna is switched on. This phenomena is
also present in GRACE GPS data (cf. figure 2)

I The BlackJack receiver has a known code tracking issue
which occurs for some code observations leading to
15.5 m bias for C/A, P1 and P2 observations for that
specific observation arc (Montenbruck and Kroes, 2003)
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Figure 2: Tailing GRACE A

Benefits for kinematic GRACE orbits from RCM

I Strengthened observation geometry due to smaller DOP values, decorrelation of radial
coordinate and receiver clock error, clock parameters are no longer epoch-wise parameters

I Improved mean daily RMS values of high-pass filtered coordinate differences between
kinematic and reduced-dynamic orbits without and with epoch-wise clock modeling by 5%
to 24% (Weinbach and Schön, 2013)

IfE kinematic GRACE orbits with RCM using P3 and L3
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Figure 3: IfE orbit using P3 and L3 observations w.r.t.
JPL reduced-dynamic orbit for 3rd Dec. 2012
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Figure 4: IfE orbit using P3 and L3 observations w.r.t.
IfG kinematic orbit for 3rd Dec. 2012

I We compare our solution with the reduced-dynamic orbit from JPL, the kinematic orbit
from Institute of Geodesy (IfG) from the TU Graz (Zehentner and Mayer-Gürr, 2013) and
the kinematic orbit from the Astronomical Institute of the University of Bern (AIUB)

I Mean value of radial coordinate shows +2.8 cm offset for GRACE A w.r.t. JPL orbit
I Mean values of along and cross fit within 8 mm compared to all other orbits
I Mean standard deviations w.r.t. JPL reduced-dynamic orbit for GRACE A for two days in

December 2012: 3.6 cm (along), 3.5 cm (cross), 3.9 cm (radial)

New approach for GRACE kinematic orbits

I Measured distances are directly linked with the receiver clock error δti

I Each phase measurement contains an ambiguous number N of whole phase cycles
I Columns for time offsets oi in the design matrix are linear depended from columns for

estimated phase ambiguities Ni

I In the conventional case the code observations rectify the column singularity

I Idea: the receiver clock time offset can be seen as a
part of the phase ambiguity

I Time offsets oi and ambiguities Ni are put into one
common parameter, the column singularity in the design
matrix vanishes even without using code observations

I Each clock polynomial does not have its own time
offset oi but is now attached relatively to its previous
polynomial (cf. figure 5) Figure 5: RCM with phase only

I The overall time offset o0 is set to zero. The introduced error is absorbed by the
parameters for the ambiguities Ni

I A parameter adjustment only with phase observations in the design matrix is possible
I This works out for GRACE data because of the pre-processing. GPS observations are time

corrected w.r.t. the GPS system time and phase observations are bias-adjusted so that
they “are close to the range counterparts” (Wu et al., 2006)

I Furthermore the a-priori coordinates for every observation epoch are known by a few
centimeters, coming from the JPL reduced-dynamic orbit

I Benefits: less precise (and partly biased) code observations (compared to the high accurate
phase measurements) are no longer used. No near-field code multipath and no
multipath-like code errors are introduced into the adjustment (cf. figure 2)
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Change in the design matrix A

Figure 6: Part of the design matrix A for code
and phase observations with RCM

Figure 7: Part of the design matrix A with
RCM using phase observations only

IfE kinematic GRACE orbits with RCM using L3 only
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Figure 8: IfE orbit using only L3 observations w.r.t.
JPL reduced-dynamic orbit for 3rd Dec. 2012

0 2 4 6 8 10 12 14 16 18 20 22 24

a
lo

n
g

-20

-10

0

10

20

GRACE A: IfE kin. orbit - IfG kin. orbit [cm]

0 2 4 6 8 10 12 14 16 18 20 22 24

c
ro

s
s

-20

-10

0

10

20

GPS Time [h] - DOY 338, year 2012

0 2 4 6 8 10 12 14 16 18 20 22 24

ra
d

ia
l

-20

-10

0

10

20

Figure 9: IfE orbit using only L3 observations w.r.t. IfG
kinematic orbit for 3rd Dec. 2012

I Mean values of along and cross coordinate
fit within 1.2 cm compared to all other
orbits

I Mean radial coordinate is +5.2 cm off
compared to AIUB kinematic GRACE orbit

I Mean standard deviations w.r.t. JPL orbit
for GRACE A for two days in Dec. 2012:
3.6 cm (along), 2.5 cm (cross), 3.6 cm
(radial)

Figure 10: Mean 3D-RMS in cm of IfE kin. orbit
w.r.t. other orbits from two day in 2012

Conclusion

I GRACE GPS data suffers from code multipath, occultation antenna cross-talk affecting the
code observations and code tracking biases

I GRACE USO offers the opportunity for GPS Receiver Clock Modeling (RCM), leading to
improvements in position residuals and DOP values

I Pre-processed GPS data makes a phase only positioning in combination with RCM feasible
I Without the corrupted code observations the position residuals are improved for the

GRACE satellite where the GPS occultation antenna is in operation
I Further studies are needed to evaluate the full potential of the phase only PPP with RCM

for kinematic orbits
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