
Variable: Value (and/or unit):
 

Description:

Cn
2 1.2e-9 [m-2/3] Structure constant of refractivity

k0 = 2π/L0 = 2π/6000 2π/6000 [1/m]
Wave number to corresponding 

outer scale length L0

a=b=c 1 [-]
Elongations of turbulent structures

(a, b: horizontal, c: vertical)

eA
i 3 - 90 [°] Elevation of satellite i at station A

v0 0.5 [m/s] Wind velocity

av 180 [°] Wind direction (azimuth)

ev 0 [°] Wind direction (elevation)

H 1000 [m]
Height of wet troposphere

(integration height)

d [m]
separation distance between 
the actual integration pointsFigure 1: Sky plot of artificial satellite 

geometry used for investigations: A single 
satellite rises at 0° azimuth from 3° to 90° 

elevation within 3.5 hours. 

Table 1: Parameter values as used in sensitivity analyses and slant delay 
turbulence simulations (unless otherwise stated)

Figure 2: Example correlation matrix 
(Cn = 1.0e-7 [m-1/3], wind velocity = 0.0 [m/s])

Figure 3: Example correlation matrix 
(Cn = 1.0e-7 [m-1/3], wind velocity = 4.0 [m/s])

Figure 4: Partial derivative of Eq. (1) with respect to Cn
2  for an 

exemplary observation geometry of two simultaneous observations 
at 25° and 50° (azimuth 0°).

Parameter: k0 Cn
2 a c εA

1 v b αv

Double integral value: -0.093 0.045 0.034 0.015 -0.009 0.00001 0.0 0.0

Table 2: Double integral values of partial derivatives of Eq. (1) wrt main model parameters for 
two simultaneous observations at 25° and 50° in the example observation geometry. 

Figure 5: Double integral values of the partial derivative 
of Eq. (1) wrt Cn

2 (and thus prefactors in the total 
differential of Eq. (1)).

Figures 8 and 9: Simulated turbulence of slant wet tropospheric delays (Cn = 1.0e-7 [m-1/3], left: L0=6000 
[km], right: L0=12000 [km]) and loglog-plots of the corresponding temporal structure functions. 

Figure 6: Double integral values of the partial derivative 
of Eq. (1) wrt k0 (and thus prefactors in the total 

differential of Eq. (1)) with L0=6000 [km].

Figure 7: Double integral values of the partial derivative 
of Eq. (1) wrt k0 (and thus prefactors in the total 

differential of Eq. (1)) with L0=12000 [km].

Parameter: k0 Cn
2 εA

1 c a v b αv

Double integral
value: -0.038 0.035 -0.034 0.015 0.00003 0.00001 0.0 0.0

Table 3: Average double integral values of partial derivatives of Eq. (1) wrt main 
model parameters for all possible observations in the example observation 

geometry.
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Sensitivity analysis:
In order to identify the most influential parameters of a model (and thus the parameters which either have to be determined 
with special care or which have to be precisely known) the total differential of Eq. (1) is used. The general definition of a total 
differential reads

and has been applied to Eq. (1). Terms with large prefactors fxi are thus considered as of high impact on the covariance 
<φA

i, φB
j>. Since Eq. (1) contains a double integral the following theorem is used

which shows that differentiation and integration can be exchanged if the integral over f(x, y) is defined, if f(x, y) is continuous 
and if the partial derivative of f(x, y) with respect to y exists. For Eq. (1) these requirements are fulfilled. 

As an example, Figure 4 shows the partial derivative of Eq. (1) with respect 
to Cn

2 for a fixed observation geometry with two simultaneous observations 
at 25° and 50° elevation (azimuth 0°, the remaining parameter values are 
shown in Table 1). The double integral of this function (i.e, the volume below 
the surface shown in Figure 4) indicates the impact of small variations of Cn

2 
on the covariance <φA

i, φB
j>. Table 2 shows the relation of the double integral 

values of the respective partial derivatives of Eq. (1) with respect to the most 
important model parameters. Thus, for the example geometry of two 
observations at 25° and 50° elevation variations of the turbulence 
parameters outer scale length L0 (or the corresponding wave number k0) and 
structure constant Cn

2  have the largest impact and show that these 
parameters should thus be known most precisely (see also Table 2). 

For a more general investigation the double integral values for all elevation combinations (in 5° steps from 5° to 90° 
elevation) have been computed and displayed in Figures 5 to 7 for the two main parameters Cn

2 and k0. Again, the most 
influential parameters are k0 and Cn

2 especially when both observations are performed at low elevations. Figure 5 and Table 3 
show that small variations of Cn

2 lead to small positive covariance variations. On the other hand, small variations of k0 cause 
negative variations of the covariance (with a similar (absolute) effect as variations of Cn

2), see Figure 6. Figure 7 shows that a 
different L0 value (changed from L0=6000 [km] in Fig. 6 to L0=12000 [km] in Fig. 7) acts as a scaling. The average impact of 
the remaining parameters on the covariance is shown in Table 3. 

Conclusions:
The analysis of the double integral values of the partial derivatives (i.e., the terms of the total differential) of Eq. (1) for an 
exemplary observation geometry showed that covariance variations are mainly caused by variations of the turbulence 
parameters k0 and Cn

2. Hence, these parameters need to be specified most precisely. On the other hand, some parameters 
are of negligible impact. Obviously, these results are only valid for the artificial observation geometry shown in Figure 1. 
Further investigations will concentrate on more general observation geometries.

Introduction:
Atmospheric turbulence induces physical correlations on any space geodetic technique 
based on electromagnetic waves. Thus, also GNSS phase observations are both temporally 
and spatially correlated due to refractivity fluctuations along the signal's path from the 
transmitter to the receiver. Currently, these physical correlations are rarely considered in 
GNSS data analysis; yielding too optimistic parameter variances and covariances.

Based on turbulence theory, Schön and Brunner (2008) developed a formulation of the 
variances and covariances induced by refractivity fluctuations in the troposphere. This model 
adequately describes the variance-covariance matrix (VCM) of tropospheric slant delays. 
The parametrisation is mainly based on the turbulence structure constant, the outer scale 
length, the integration height, the wind direction and the observation geometry.

The VCM can adequately be used to determine synthetic slant delay time series. In this 
poster, this strategy is described by using an exemplary GPS configuration. Furthermore, 
the latest results of simulation studies and sensitivity analyses of this VCM model with 
respect to the model parameters are presented. As a result, the most dominant parameters 
(that should be either  determined with special care or precisely known) are identified.

Stochastic modelling of atmospheric fluctuations:
The stochastic model of GNSS phase observations developed by Schön and Brunner (2008) 
uses the von Karman spectrum of refractivity fluctuations to model the covariance <φA

i, φB
j> 

of two carrier-phase observations performed at two stations A and B to two satellites i and j 
as

with Γ denoting the Gamma function and K the modified Bessel function of second kind; also 
called MacDonald function. The variables and their values as used for the following 
investigations are summarised in Table 1. Eq. (1) must be evaluated numerically. Since the 
carrier phase variations are caused by tropospheric refractivity fluctuations the VCM derived 
by Eq. (1) also describes the stochastic behaviour of slant tropospheric delays and thus 
enables simulations as described below. Figures 2 and 3 show example correlation matrices 
derived from VCMs computed by Eq. (1). The decorrelating effect of wind can clearly be 
recognized.

Simulation of slant delay turbulence:
A variance-covariance matrix Σyy derived from Eq. (1) can be used to simulate the 
turbulence of a slant delay time series y. In general, a time series y with predetermined 
stochastic properties Σyy can be obtained by a transformation 

with x being a Gaussian random vector with x ~ N(0, 1) and a transformation matrix W. 
Since 

and with the Cholesky-decomposed variance-covariance matrix Σyy = Q' Q the 
transformation matrix W reads: W = Q'.

Figures 8 and 9 show several realisations of synthetic slant delays generated by using a 
1000 x 1000 VCM  for the example geometry (see Figure 1) with different values for the 
outer scale length L0 (but the same values for Cn

2). The sampling rate of the simulated 
observations is 11.6 seconds (due to an assumed constant rising velocity of the satellite). 
Larger variations can be seen for larger values of the outer scale length L0.

The lower part of the plots shows the structure functions of the generated times series. In 
general, a structure function is defined by

The loglog-plots of the temporal structure functions show a power law behaviour of the 
generated time series, i.e.

The slopes of the respective adjusting straight lines (and thus the exponent α of Eq. (2)) 
are approximately 5/3. This indicates a three-dimensional turbulence process (i.e., station 
separation small compared to the tropospheric height) and was expected since the model 
given by Eq. (1) is based on a von Karman spectrum with an exponent of -11/3. In 
addition, the larger value of the outer scale length L0 leads to a larger value of the time 
shift where the structure function approaches a constant value (saturation point).   

Outlook:
In future, the current sensivity investigations will be extended to both more complex and 
more realistic observation geometries. The simulation of slant wet delay turbulence will 
also be extended and simulated time series will be compared to results obtained from real 
data. Future investigations will especially focus on the relation of e.g. outer scale length 
and saturation points of simulated and real SWD time series. 
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