Introduction

- Ionospheric scintillations impact GPS ionosphere-free linear observations from SWARM satellites and subsequently the derived orbits and gravity field solution.
- Different patterns of noise exist when flying above the equator or pole.

Filtered with Matérn covariance matrix

- An adequate covariance matrix W (Kermarrec and Schön 2017) is built based on the knowledge of the ionospheric spectral density: $W(\nu) = (\alpha^2) \Delta \nu W(\nu)$. Smoothness α depends on the ionospheric strength (weak: 0.1-0.5, moderate: 0.5-1.2, strong: 1.2-1.7).
- The noise corresponding to ionospheric scintillations is extracted from the identified time series $y' = y - \hat{y}$, with $\hat{y} = W^{-1} y$, $\gamma = \frac{\alpha^2}{W}$ with $\nu_0, \alpha \in 3$mm.

Summary of applied methodology

- Preprocessing step
- Subtraction of the mean and polynomial fitting of the observations
- Noise detection in the preprocessed observations
- Rate of change with $\text{deg} \cdot \text{day}^{-1}$ ionosphere-free linear combination of carrier phase observations
- Empirical threshold $\text{30} \text{ ms}^{-1}$
- Extraction of the iono-T5: minimal length $\text{250} \text{s}$
- Filtering with adequate VCM
- Reconstruction of the observations

Summary of the methodology used to detect, filter and reconstruct the contaminated time series of observations.

Improved kinematic orbit determination

- The position residuals contain less high frequency noise.

Conclusions

- Matérn covariance matrices with $\nu = 1.5$ and $\nu = 1$ are used to mitigate the impact of noise increase due to ionospheric scintillations and these homogenize the observation noise.
- The spectral decomposition -slope of the psd at high frequency-= of the filtered OMC is similar to the one that would be obtained without noisy observations.
- The noise caused by ionospheric scintillation is strongly eliminated using Matérn covariance matrix, with 6%, 10% and 20% in the along, cross-track and radial direction, respectively.

References/Acknowledgement

This project is part of CONTRIM and funded by the Deutsche Forschungsgemeinschaft (DFG) under the SP5110 Dynamic Earth. The Swarm reduced-dynamic orbits have been made available by European Space Agency (ESA). GPS orbits and clock have been obtained from the Center for Orbit Determination in Europe (CODE). TU Delft is also very appreciated for providing the PCV maps. The support of these institutions is gratefully acknowledged.