

On the influence of the troposphere on GNSS-based distance metrology: modeling and experiments

- 1st Workshop on Metrology for long distance surveying -

Session IIa: GNSS-based distance metrology - understanding uncertainty contributions

Institut für Erdmessung Leibniz Universität Hannover

Thomas Krawinkel, Steffen Schön & Tobias Kersten | Friday, November 21st, 2014

Overview

Concept of reducing tropospheric refraction

- Motivation and issues
- Concept for modeling the troposphere
- Mathematical issue

Setup for scenarios

Scenarios for combining networks

- Scenario 1: two local stations whereby one is connected to a reference station
- Scenario 2: two local stations connected to unique reference station
- Scenario 3: two local stations connected to two reference stations

Summary and outlook

GNSS observation modeling | impact of troposphere

Bermuda triangle

- high correlations between certain parameters in GNSS observation modeling
- ▶ 1 mm deviation in tropospheric delay relates to -3 mm in up-component

Discrepancy	GPS-	GPS-	GPS-
	VLBI	SLR	DORIS
[mm]	[%]	[%]	[%]
<6	47	43	34
6-10	24	29	12
>10	29	28	54

Local ties

- table shows local tie discrepancies of ITRF, [Altamimi et al., 2011]
- mean value of combinations shows for 37% discrepancies of > 10 mm

Issues

- mixed observation types between local and global baselines
- discrepancies w.r.t. terrestrial survey

short baseline: < 10 km**long baselines:** $\ge 10 \text{ km}$

Fundamental station Wettzell, Bad Koetzing, Germnay

Classification of coordinate variations

$$\Delta \hat{\mathbf{x}} = \begin{bmatrix} \Delta \mathbf{N} \\ \Delta \mathbf{E} \\ \Delta \mathbf{U} \\ c \cdot \delta \mathbf{t} \\ \vdots \end{bmatrix} = \begin{bmatrix} (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} & \Delta \mathbf{I} \\ \vdots \end{bmatrix} = \mathbf{K} \Delta \mathbf{I}$$
(1)

mathematical effect

Dimension and elements of ${\bf K}$ change if additional tropospheric parameters are estimated.

physical effect

Matrix K stays unchanged, values of $\Delta \mathbf{I}$ change due to different

- ▶ frequencies (L₁, L₂,...)
- linear combinations (L₃,...)
- environmental situations
- antennas

Concept for correcting local ties: mathematical effect

Basic observation by analysing transfer matrix K, [Schön, 2007]

- mathematical effect leads to apparent height deviation
- ratio δ_U^T or $(\Delta U/\Delta T)$ is constant
- ▶ values ($\delta_U^T \in$ [-3.5;-3]) depend on applied cutoff angle
- ratio of lines in matrix K shows same behavior
- applying correction

$$\Delta \mathbf{h'_{L_3T}} = \Delta \mathbf{h_{L_3T}} - \delta_U^T \cdot \Delta \mathbf{T}$$

	ΔN	ΔE	ΔU	Δ T
	[mm]	[mm]	[mm]	[mm]
L ₃	0.54	-0.24	-1.76	-
L_3T	0.61	-0.26	-3.78	0.64

Table: Different analysis methods for a 20 m baseline.

Setup on laboratory network of Institut für Erdmessung (IfE)

Measurement configuration

- 5×24 h sessions from 25.11.-30.11.2011 (DOY 339-341)
- absolute calibrated GNSS antenna (Leica AT504GG)
- Leica GRX1200+GNSS receivers on both stations

GPS analysis

- Bernese 5.0 / 5.2 software
- double difference approach
- estimating tropospheric delays on short and long baselines (Niel model)
- cutoff angle: 3° (in case of L₃T); 10° otherwise

Scenarios for combining networks

Explanations to to the scenarios		
short baseline	long baseline	

How to link Coordinates: Scenario 1.1 (different solution types)

Scenario 1.1 short baseline (local stations), one station linked via long baseline

application

- short baseline with L₁
- Iong baseline as L₃T (T: troposphere estimation)
- combination of normal equations systems (NEQs) of both baselines

advantages

- make use of most precise L₁ observations
- no systematic coordinate deviations driven by tropospheric modeling

disadvantages

 correlations between baselines cannot be taken into account

How to link Coordinates: Scenario 1.2 (single solution type)

Scenario 1.2 short baseline (local stations) and long baseline determined with unique solution type (L_3T)

application

- L₃T for both baselines (long and short)
- ▶ determine △T by comparing L₃T and L₁ solutions
- ► determine correction ∆h_{L3T} for station, not connected to reference station

 $\Delta \mathbf{h'_{L_3T}} = \Delta \mathbf{h_{L_3T}} \cdot \delta_U^T \cdot \Delta \mathbf{T}$

advantages

 take correlations of baselines into account

- L_3T := solution for up-component
- L_3T := correction for up-component

disadvantages

- only compensates for difference L₃T and L₃
- difference between L₁ and L₃ remains

Scenario 2 two local stations are connected to one unique reference station via two long baselines

application

- long baselines as L₃T
- correcting up-component values with δ^T_U (due to mathematically *apparent* height changes)

•
$$\delta_U^T \in [-3.5; -3]$$

advantages

- ► correction δ^T_U reduces systematic deviations of L₃T
- smoothing of repeated coordinate time series

disadvantages

- noisier results on long baselines (w.r.t. short baseline)
- systematic offset between L₁ and L₃T on short baseline remains

ife Institut für Erdmessung

Scenario 2: Baselines depending on choosen reference station

T. Krawinkel, S. Schön & T. Kersten | 1st Workshop on Metrology for long distance surveying | November 21st, 2014

Scenario 3 two local stations are connected to two different reference stations via two long baselines

application

- using L₃T for both stations connected to *different* reference stations
- apparent height change in up-component cannot be repaired by height correction

advantages

 ad hoc or simple application to connect two individual GNSS-networks (rare case)

disadvantages

- individual datum of individual network (datum (S)-Transformation needed)
- correction in up-component is not applicable on troposphere parameter (similar troposphere typically not present)

Ife Institut für Erdmessung

Scenario 3: local baseline with different reference stations

Zenith wet delay (ZWD) for local coordinate time series and IGS stations

- WARN (Warnemünde, Germany)
- WSRT (Westerborg, Germany)

T. Krawinkel, S. Schön & T. Kersten | 1st Workshop on Metrology for long distance surveying | November 21st, 2014

Summary | influence of troposphere on GNSS-based distance metrology

Concept of correcting influence of troposphere

Scenario 1: two local stations and one connected to reference station

- different solution types (L₁ & L₃ / L₃T) -> applicable (currently best case!)
- single solution type (L₃T) -> applicable with height correction, [Krawinkel et al., 2014]

Scenario 2: two local stations connected to one single reference station (long baseline)

- applicable with height correction, [Krawinkel et al., 2014], but with noisier solution (3σ_{L1})
- strongly depending on choosen reference station

Scenario 3: two local stations connected to two different reference stations (long baselines)

- correction currently not applicable due to
 - different troposphere at individual reference stations
 - individual network datums need to be harmonized

Outlook | present activities

current and further work

- analysis of twin-stations within IGS, EPN as well as ITRF stations
- aim: investigate and reduce the mathematical *apparent* height change for several international network scenarios
- special focus on local tie issue to investigate best practice workflow for combining GNSS and other networks (terrestrial etc.)

EUROPEAN METROLOGY RESEARCH Programme Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

T. Krawinkel, S. Schön & T. Kersten Institut für Erdmessung Schneiderberg 50 D-30167 Hannover, Germany phone + 49 - 511 - 762 5711 fax + 49 - 511 - 762 4006 web http://www.ife.uni-hannover.de mail kersten@ife.uni-hannover.de

Acknowledgement

This work is performed within the joint research project SIB60 *Surveying* of the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

References

ī.

Altamimi, Z., Collilieux, X., and Metivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. *Journal of Geodesy*, 85(8):457–473.

Krawinkel, T., Lindenthal, N., and Schön, S. (2014). Scheinbare Koordinatenänderungen von GPS-Referenzstationen: Einfluss von Auswertestrategien und Antennenwechseln. Zeitschrift für Vermessungswesen, 139:252–263.

Schön, S. (2007). Affine distortion of small GPS networks with large height differences. *GPS Solutions*, 11:107–117.

ife Institut für Erdmessung

Appendix | Scenario 3: local baseline with different reference stations

Zenith wet delay (ZWD) for local coordinate time series and IGS stations

ife Institut für Erdmessung

Appendix | Scenario 3: local baseline with different reference stations

Zenith wet delay (ZWD) for local coordinate time series and IGS stations

Appendix | Scenario 3: local baseline with different reference stations

Zenith wet delay (ZWD) for local coordinate time series and IGS stations

