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Motivation

Figure 1: artist’s concept of the two
GRACE satellites in orbit

I 15 years of Earth’s gravity field determination from space
I Low Earth Orbiter (LEO): satellite in ca. 500 km altitude
I several sensors on-board of the LEO satellites
I precise LEO positions are mandatory for gravity estimation
I also absolute timing of all sensor data is necessary
I both can be achieved by using GNSS signals
I errors in Precise Orbit Determination (POD) directly

transfer into the gravity field solution
I two methods of POD for gravity field recovery:

reduced-dynamic orbits, kinematic orbits

Approaches for precise orbit determination

I reduced-dynamic orbits: positions from GNSS data combined with physical force models
⊕ very precise orbits with standard deviations for the coordinates of ca. 3 cm

	 depends on introduced force models

I kinematic orbits: using GNSS data and attitude information from star camera data
⊕ free of force models, therefore good ability for gravity field determination

	 challenges in GNSS positioning

Concept and challenges of kinematic orbits with PPP

I estimation with Extended Kalman Filter (EKF) or Least-Squares Adjustment (LSA)
I no tropospheric signal delay at LEO altitude
I orientation of LEO’s GNSS antenna from star cameras
I reduced-dynamic orbits as reference solution for position comparison
I remaining challenges: dynamic ionospheric conditions, nearfield multipath, PCVs, short

observation times and small number of GNSS satellites, large number of phase ambiguities

Concept of Receiver Clock Modeling (RCM)

I conventional case: estimation of receiver clock
error for every observation epoch

I RCM: modeling the receiver clock behavior
instead of estimating the clock error

I clock modeling is feasible as long as the Allan
deviation of the atomic clock is smaller than the
white noise of GNSS phase observations (figure 2)

I RCM for kinematic GRACE positions is possible
due to the Ultra Stable quartz Oscillator (USO)
on-board

Figure 2: Allan deviation of atomic clocks
(Weinbach, 2012)

Extended Kalman Filter:
I process noise matrix Qw with hα coefficients of the atomic clock (van Dierendonck et al., 1984)
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Least-Squares Adjustment:

I modeling the clock behavior through a piece-wise
linear polynomial with coefficients time offsets oi and
frequency offsets δfi (figure 3)

I δti = oi + δfi · (t − ti)
I the frequency stability of the atomic clock restricts

the length ∆t of one polynomial part, called the
clock modeling interval

Figure 3: RCM with piece-wise linear
polynomials

Applying RCM for GRACE’s GPS data

I GRACE: Gravity Recovery And Climate Experiment, two LEOs at ca. 480 km height (figure 1)
I GPS L1 and L2 observations and reduced-dynamic orbit positions available from JPL
I our simulated observations are based on geometrical distances between GPS and GRACE

satellites with P3, L3 observation noise added

Gain for observation geometry and formal standard deviations:

I strengthened observation geometry due to smaller DOP values (figures 4 to 6)
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Figure 4: without RCM

GPS Time [min] - DOY 338

0 30 60 90 120 150 180
0

0.5

1

1.5

2
along-DOP

cross-DOP

radial-DOP

Figure 5: ∆t = 60 s
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Figure 6: ∆t = 2760 s

I the longer the interval, the smaller the positive correlation of the coordinates among each other
I coordinates of consecutive epochs are linked with a common clock parameter
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Applying RCM for GRACE’s GPS data

Figure 7: formal mean standard deviation of estimated parameters in mm for
different lengths of ∆t using P3 and L3 (GRACE B, 3rd Dec. 2012 (DOY 338))

Impact on ambiguity correlations:

I ∆t = 60 s: ambiguity correlation from +20.5% to +99.6%, mean +62.7% (figure 8)
I ∆t = 2760 s: ambiguity correlation from +32.2% to +99.6%, mean +70.2% (figure 9)
I ∆t = 5520 s: ambiguity correlation from +35.5% to +99.6%, mean +75.1% (figure 10)
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Figure 8: ∆t = 60 s
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Figure 9: ∆t = 2760 s
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Figure 10: ∆t = 5520 s

I columns for time offsets and ambiguities in design matrix A are linear dependent
I code observations rectify the column singularity, but even the P-Code has a much higher

observation noise compared to the phase observations
I idea: consider the receiver clock time offsets as parts of the unknown phase ambiguities

Kinematic PPP with phase only and parameter lumping

I assume one constant ambiguity N per GNSS
satellite per continuous observation arc

I Φ = ρ + ... + c · δti + λ · N
I RCM with time offset oi and frequency offset δfi
I Φ = ρ + ... + c · (oi + δfi · t) + λ · N
I Φ = ρ + ... + c · δfi · t + c · oi + λ · N
I lumping all time offsets oi and the ambiguity N

together in one parameter N∗

I Φ = ρ+ ...+ c · δfi · t +N∗ with N∗ = λ ·N + c · o0 Figure 11: RCM with parameter lumping

I no column singularity between clock offsets and ambiguities, no need of code observations
I kinematic PPP only with high accurate phase observations possible

Gain for observation geometry and formal standard deviations:

Figure 12: formal mean standard deviation of estimated parameters in mm for
different lengths of ∆t using L3 only (GRACE B, 3rd Dec. 2012 (DOY 338))

Impact on ambiguity correlations:

I ∆t = 60 s: ambiguity correlation from +9.8% to +99.8%, mean +63.3% (figure 13)
I ∆t = 2760 s: ambiguity correlation from -78.1% to +99.6%, mean +50.9% (figure 14)
I ∆t = 5520 s: ambiguity correlation from -70.1% to +99.5%, mean +53.5% (figure 15)
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Figure 13: ∆t = 60 s, phase only
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Figure 14: ∆t = 2760 s, phase only

Number of ambiguity

10 20 30 40 50 60

10

20

30

40

50

60

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 15: ∆t = 5520 s, phase only

Conclusion

I RCM for LEOs leads to significantly smaller formal standard deviations for the radial
coordinates, receiver clock errors and ambiguities

I new concept of kinematic PPP with phase only and parameter lumping can reach similar
improvements in the coordinate domain, even more accurate results for the receiver clock error
and the ambiguities with different correlations of the ambiguities among each other
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