Introduction

Global Navigation Satellite Systems (GNSS) are one-way ranging systems. Consequently, receiver and satellites time scales have to be synchronized. This is generally realized by introducing satellite and receiver clock errors w.r.t. GNSS system time. Corrections for the satellite clock errors are broadcasted by the system provider, e.g. via GNSS navigation message. In contrast, due to the limited long-term frequency stability of the receiver’s internal quartz oscillator and its generally poor accuracy, the receiver clock error has to be estimated epoch-by-epoch. This leads to (epoch-dependent) high mathematical correlations of 83–99% between the height component and the clock parameters (Fig. 1). As one consequence, the station height is typically determined about three times worse than the horizontal coordinates.

This situation can be improved when using more stable clocks and modeling their behavior in a physically meaningful way instead of epoch-wise estimation. Especially kinematic Single Point Positioning (SPP) will benefit from such an approach called receiver clock modeling (RCM, Weinbach 2013). Recent developments of low-priced, low power consuming (<120 mW) miniaturized atomic clocks (MACs) such as Chip Scale Atomic Clocks (CSACs), allow for usage in kinematic GNSS applications. Thus, replacing the receiver’s internal oscillator by one of these much more stable external frequency standards opens up the possibility of RCM, and thereby improved positioning.

Clock Characterization

In order to correctly model the behavior of an external frequency standard in GNSS data analysis its stability has to be known. For the present study we use three different miniaturized atomic clocks: Jackson Labs LN CSAC, Microsemi Quantum™ SA-45s CSAC, and Stanford Research System PRS10. At Physikalisch-Technische Bundesanstalt (PTB), these devices’ 10 MHz output signals were compared to the phase of an active hydrogen maser (VREMYA-CH VCH-1003A) by means of a phase comparator with a selectable sampling interval of 1 or 100 s.

Kinematic Experiment

Data Acquisition

We carried out a real kinematic experiment on an eight-shaped car-road in an approx. 500 x 800 m² area with only a few natural obstructions in form of an alley (Fig. 5). The basic measurement configuration consisted of five JAVAD Delta TRE-C3T(H) receivers running an identical firmware version (3.1.4.4), and connected to one NovAtel 703GGG antenna via an active signal splitter. Four of these receivers were fed by the 10 MHz signals of our three MACs. For comparison reasons the fifth receiver was run by its internal oscillator.

Concepts of Receiver Clock Modeling

One prerequisite for receiver clock modeling is that the clock noise has to be well below the GNSS receiver noise, i.e. the integrated random frequency fluctuations of the MACs cannot be resolved by the GNSS observations in use (Fig. 2). We assume typical values for code and ionosphere-free carrier phase observations of 3 and 5 mm RMS, respectively. Since these observations are phase-based measures, we can model the dominating underlying noise process as WPM over time. The intersection points between the dashed GPS observation noise lines and the ADEV curves define the maximal time intervals for physically meaningful receiver clock modeling in our case study.

We compute two different real-time applicable navigation solutions:

• Modeling the process noise in an extended Kalman filter (EKF) using h₁-coefficients derived from ADEV in a model proposed by van Dierenrock et al. (1984)

• Applying a linear or quadratic (depending on the clock in use) clock polynomial in a sequential least-squares adjustment (LSA)

Performance Analyses

Precision and Accuracy

Benefits of receiver clock modeling:

• Increasing estimation robustness

• Improving availability and extending continuity in harsh environments

References

Weinbach U (2013) Feasibility and impact of receiver clock modeling in precise GPS positioning. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, no. 303, PhD thesis

Conclusions

• Stability analyses of miniaturized atomic clocks show good agreement with manufacturer’s data

• Benefits of receiver clock modeling:

 • Enhancing precision of up-coordinate by approx. 50%

 • Increasing estimation robustness

 • Improving availability and extending continuity in harsh environments

Fig. 1: Relationship between the parameters tropospheric delay, station height, and receiver clock error

Fig. 2: Developing Allan Deviations

Fig. 3: Manufacturer’s Allan Deviations

Fig. 4: Measurement configuration

Fig. 5: Test track with an expansion of ca. 500 x 800 m², the yellow ellipse marks an alley with signal obstructions (source: Google Earth)

Fig. 6: Internal reliability of C/A-code observations in terms of maximal detectable bias (MDB) from receiver connected to the Microsemi CSAC (left) without, and (right) with receiver clock modeling

Fig. 7: Relative frequency of horizontal and vertical coordinate components from the receiver connected to the Microsemi CSAC (left) without, and (right) with receiver clock modeling

Fig. 8: Relative frequency of horizontal and vertical coordinate components from the receiver connected to the Microsemi CSAC (left) without, and (right) with receiver clock modeling

Max. improvement of 16.5% for G1S (mean MDB: 15.6 m → 13.0 m)

MDB jumps for G10 when passing through the signal (interpolations) are also reduced

No vertical values greater than 4 m remain (w/o RCM: 35%)

Number of values smaller than 2 m increases (59% → 89%)

Generating two artificial partial satellite outages like, e.g., in urban environments

Positioning with only three satellites possible due to known receiver clock behavior

Additional correction in observation equation based on latest receiver clock coefficients

Institut für Erdmessung
Schellingstor 50
D-30167 Hannover

26th General Assembly 2015 | International Union of Geodesy and Geophysics | Prague
June 22 – July 2, 2015