

Ray-tracing Approach versus Double Difference, Multipath Characterization in a Multiple Ray Scenario

Marios Smyrnaios¹, Marcos Liso², Steffen Schön¹, Thomas Kürner²

¹Institut für Erdmessung (IfE), Leibniz-Universität Hannover ²Institut für Nachrichtentechnik (IfN), TU Braunschweig

NAVITECH - Noordwijk 05.-07.12.2012

Motivation

Multipath is one of the dominating error sources in high precision GNSS

• Multipath effects in observation domain are characterized as functions of:

✓ carrier Frequency
✓ Geometry related parameters
✓ Signal Amplitudes of the involved signal components (both LOS and MPCs)

Presentation Focus:

- Signal Amplitude Epoch-wise Modeling
- Novel Ray-Tracing Approach for the Characterization of a Multiple-Reflection/Diffraction Environment

Multipath Characterization

Multipath errors in the Observation domains are characterized as functions of:

- Multipath Relative Phase w.r.t. LOS ΔΦ (geometry)
- Multipath Relative Amplitude w.r.t. LOS α (Not directly accessible)

Multipath Characterization

Multipath errors in the Observation domains are characterized as functions of:

- Multipath Relative Phase w.r.t. LOS ΔΦ (geometry)
- Multipath Relative Amplitude w.r.t. LOS α (Not directly accessible)

Multipath Characterization

Multipath errors in the Observation domains are characterized as functions of:

- Multipath **Relative Phase** w.r.t. LOS ΔΦ (geometry)
- Multipath Relative Amplitude w.r.t. LOS α (Not directly accessible)

Leibniz

Universität Hannover

- Ground Multipath Scenario Investigation (i.e. known geometry)
- Two Signal Components: LOS and Ground MPC

Leibniz Universität Hannover

Analytical GNSS Signal Amplitude Model (2)

- Ground Multipath Scenario Investigation (i.e. known geometry)
- Two Signal Components: LOS and Ground MPC

Signal Amplitude Model:

Transmitted Signal Polarization

Reflection Process

Transmitted Signal is Modeled As **R**ight **H**and **C**ircular **P**olarized (by the appropriate **Jones vector)**

Receiving Antenna

Analytical GNSS Signal Amplitude Model (3)

- Ground Multipath Scenario Investigation (i.e. known geometry)
- Two Signal Components: LOS and Ground MPC

Signal Amplitude Model:

Analytical GNSS Signal Amplitude Model (4)

- Ground Multipath Scenario Investigation (i.e. known geometry)
- Two Signal Components: LOS and Ground MPC

Signal Amplitude Model:

Transmitted Signal Polarization

Reflection Process

Receiving Antenna

Modeling the **Receiving Antenna** by taking into account the **Elevation Dependence** of the **Gain Patters** (by the appropriate **Jones vector**)

Controlled environment at the PTB antenna test facility in Braunschweig

- Two antennas with different height (A2=2.053 m, A2=1.358 m)
- The antennas were spaced about 21.3 m
- The observational period lasted for about 7 hours
- Cut- off angle of 0°
- The data rate was 1 Hz.
- One pair of AX1202GG Leica antennas
- One pair LEICA GRX1200+GNSS receivers.

eibniz.

Universität Hannover

Model Validation: Simulations - Assumptions

eibniz.

Universität Hannover

Adopted from: http://webone.novatel.ca/assets/Documents/Papers/GPS701_702GG.pdf.

Assumptions used for the simulations:

- Gain patterns of NOV702GG antenna were used (assumed to be similar to the AX1202)
- They were assumed symmetrical in azimuth
- The satellite signals were assumed perfect RHCP
- Horizontal reflector

Leibniz Universität Hannover Model Validation: ife Observed C/N₀ vs Simulated Signal Amplitude

Simulations can explain the main features present in the observations

Disturbances occur which are due to our simplifications e.g.:

- Neglecting a small **Tilting** of the reflector => **Frequency** changes
- Deviation of the used from the real receiving antenna Gain Patterns:
- 1. Deviations of the **Upper Hemisphere**: Differences in the trend of the time series (LOS contribution)
- 2. Deviations of the **Lower Hemisphere**: Differences in the amplitude of the oscillations (MPC contribution)
- Not Considering additional Phase Shifts due to reflection process => Frequency changes, Phase Shifts

Model Validation: Phase Domain

• Simulations: Phase-error for each of the MPCs Involved in the DD

Leibniz Universität

Hannover

Model Validation: Phase Domain

Observed phase-DD vs Simulations phase-error-DD

Concrete

Leibniz Universität

Hannover

No Loss

Novel Ray-Tracing Approach for Complex Geometry Scenario Characterization

Smyrnaios et al.: On Multipath Propagation and GNSS Signal Ampitude

Navitech - Noordwijk 05.-07.12.2012 15

Ray-Tracing Scenario and Input Parameters

Ray-tracing input parameters

- 1. Description of the physical environment in which the Receiving Antenna is placed in (**Scenario**)
- 2. Transmitting Antenna Position
- 3. Receiving Antenna Position

Smyrnaios et al.: On Multipath Propagation and GNSS Signal Ampitude

Errors in Code and Phase Domain Due to Each MPC And Due to All MPCs (1)

100

Errors in Code and Phase Domain Due to Each MPC And Due to All MPCs (2)

Smyrnaios et al.: On Multipath Propagation and GNSS Signal Ampitude

Errors in Code and Phase Domain Due to Each MPC And Due to All MPCs (3)

Errors in Code and Phase Domain Due to Each MPC And Due to All MPCs (4)

Summary

GNSS Signal Amplitude Model Taking into Account:

- Polarization of the transmitting antenna (RHCP)
- Reflection process (losses, depolarization effects, phase shifts)
- Polarization of receiving antenna which is modeled as a function of the antenna gain and the elevation of the incoming signal components

Simplified version but already good agreement. There are still some differences...

Future Work

- Improve model and reduce the assumptions
- What about the impact of the ellipticity of the transmitted signals?
- Further investigation of complex scenarios and diffraction aspects with the Ray-Tracing tool

Thank You!

Impact of Different Reflectors

Leibniz Universität

100

Hannover

Ground Reflection Scenario

Leibniz Universität

Hannover

100