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Abstract. For the computation of high resolution re-
gional geoid models, gravity and terrain data in con-
nection with a global geopotential model play a very
important role. The data sets are usually combined
in a remove-restore procedure. In many cases, the
transformation from gravity anomalies to geoid un-
dulations is done using Stokes’s integration kernel
or a modified integration kernel, e.g., based on the
spectral combination technique. Least squares col-
location may be used for this task as well, but for
continental-scale computations the integration tech-
niques are often preferred due to their high computa-
tional efficiency.

Besides the classical integration techniques, the
wavelet technique is investigated in this contribution.
The wavelet technique also uses residual gravity
field quantities in a remove-restore procedure.
However, the computations are carried out in two
steps. The first step consists of a convolution of the
residual gravity data with several wavelet functions,
being contracted or dilated variants of one prototype
(“mother”) wavelet function. This leads to a decom-
position of the whole spectrum of the original data
into a set of filtered detail signals with unique spatial
resolution. This type of space and frequency analysis
is called multi-scale analysis (MSA). The second
step then convolves the residual gravity details with
an integration kernel (e.g., Stokes) and leads to
corresponding geoid undulations. The second step,
applied to every decomposed detail (scale) of the
original data, corresponds to the classical integration
techniques.

In this contribution, both the classical integration
and spherical wavelet techniques are applied using
Europe as a test area. The differences in methodol-
ogy and numerical performance of both techniques
are investigated. Finally, the results are evaluated by
independent GPS and levelling control points.
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1 Introduction

The determination of high resolution regional geoid
models is accomplished by the combination of
various gravity field observations, all of them having
unique properties in terms of data coverage and
spectral behavior. Usually a global gravity field
model, terrestrial gravity data and terrain data are
combined in a remove-restore procedure, where the
long wavelength content of the global model and
the short wavelength content of a topographic model
are subtracted from the surface gravity data. The
resulting residual gravity anomalies contain mainly
the medium wavelengths of the gravity spectrum and
have small values.

The conversion of these residual gravity anoma-
lies to geoid undulations can be realized by differ-
ent techniques. One method is least squares colloca-
tion, but for continental-scale computations a second
method, the integration technique, is preferred due to
its higher computational efficiency. The integration
is done using Stokes’s integration kernel or a mod-
ified integration kernel, e.g., based on the spectral
combination technique. A third technique for geoid
computation is the wavelet modelling, see Freeden
and Schneider (1998). It is also based on Stokes’s
formula and therefore partly comparable to the inte-
gration technique.

In this paper we will discuss and compare the
methodology of both the integration and the spher-
ical wavelet technique. Results are presented for
both methods using a 5′×5 ′ gravity anomaly grid
from the European Geoid Project, Denker and Torge
(1998). Finally the pros and cons of both methods
are outlined and a summary of the comparisons is
given.

2 Methodology

2.1 Stokes Integration

The classical way to transform gravity data collected
at the surface of the Earth into geoid undulationsN
was found by Stokes (1849). His formula performs



Fig. 1. Smoothed Shannon wavelet functionΨj(ψ) for
scalesj = 0 . . . 4

Fig. 2. Legendre coefficientsΨ∧
j (`) of smoothed Shan-

non wavelet for scalesj = 0 . . . 4

the integration of gravity anomalies∆g distributed
over the whole sphere using the Stokes function
S(ψ) as integration kernel, which acts as a weighting
function for the anomalies.

N =
R

4πγ

∫
Ω

S(ψ) ∆g dω (1)

In (1)ψ is the spherical distance between the com-
putation point and the surface elementdω with the
gravity anomaly∆g. Furthermore,γ is the mean
normal gravity value over the Earth of radiusR. The
integration over the whole sphereΩ can be regarded
as a spherical convolution of the function∆g with
the kernelS, see Freeden et al. (1998). Using this
relation equation (1) becomes

N =
R

4πγ
(S ∗∆g). (2)

This convolution can be computed fast and ex-
actly via a 1D Fourier transform, see Haagmans et al.
(1993). The Stokes functionS(ψ) depends only on
the spherical distanceψ and can be computed via a
closed formula. The drawback of this function is its
infiniteness forψ = 0, so that a special treatment of
the neighborhood of the computation point is neces-
sary.

When using residual data, the computation over
the whole sphere can be limited to a bounded region
under the assumption of zero-values outside this re-
gion, e.g. Torge (2001).

2.2 Wavelet Modelling

Wavelets are applied in a wide range of different
branches. The common basis for all of them is the
wavelet function, which is defined via the contraction
and translation of one prototype “mother” wavelet.

Various wavelet techniques were developed, e.g.,
through different realizations of the contraction,
or the domain of the function. For instance, there
exist discrete and continuous wavelet transforms as
well as 1- or 2-dimensional or spherical wavelets,
see Grabs (1995); Jawerth and Sweldens (1994);
Daubechies (1992); Liu and Sideris (2003); Wind-
heuser (1995). In the spherical case, the translation
of the “mother” wavelet is replaced by a rotation.

The modelling of the geoid from gravimetric data
by wavelets can be achieved by a multi-scale analy-
sis (MSA), see Freeden et al. (1998). Here the con-
traction is done in fixed steps resulting in discrete
scalesj. Furthermore, spherical wavelets, depending
only on the spherical distanceψ, are used because
the spherical shape of the Earth has to be consid-
ered for continental scale computations. The spher-
ical wavelet functions are defined by the Legendre
series

Ψj(ψ) =
∞∑

`=0

2`+ 1
4π

Ψ∧
j (`)P`(cosψ), (3)

where the Legendre coefficientsΨ∧
j (`) are connected

to the generating “mother” wavelet. An example of
a wavelet function and its corresponding Legendre
coefficients are illustrated in Figs. 1 and 2.

The wavelet modelling by MSA consists of two
steps. The first step is the decomposition of the
source data, or generally a functionF , into its
wavelet transforms of scalesj

WT {F}j = (Ψj ∗ F ) =
∫
Ω

Ψj F dω. (4)

This step can be interpreted as a bandpass-filter. The
functionF is split up into several spectral bands. The
bandwidth of each scalej is given by the range of



degrees̀ where the Legendre coefficientsΨ∧
j (`) are

unequal 0, see Fig. 2.
The second step of the MSA is the reconstruction

of the wavelet transformWT {F}j to the detail sig-
nalFj of scalej. The summation of all detail signals
yields the original functionF .

F =
∞∑

j=0

(
WT {F}j ∗ Ψ̃j

)
=

∞∑
j=0

∫
Ω

WT {F}j Ψ̃j dω =
∞∑

j=0

Fj

(5)

In the reconstruction, the dual wavelet functionΨ̃
is used, which relates toΨ via the “refinement equa-
tion”. In case of the P-scale discrete wavelets used
here,Ψ and Ψ̃ are identical, for further details see
Freeden et al. (1998).

With the help of the equations (4) and (5) one
can decompose a functionF into its wavelet trans-
form and exactly reconstruct the same functionF
from this transform. If we insert the gravity anoma-
lies ∆g for function F and put (5) in (1), we get

N =
R

4πγ

∞∑
j=0

(
WT {∆g}j ∗

(
S ∗ Ψ̃

)
j

)

=
R

4πγ

∞∑
j=0

∫
Ω

WT {∆g}j

(
S ∗ Ψ̃

)
j
dω,

(6)

a reconstruction/transformation formula for the
geoid, see Schmidt (2001) and Schmidt et al. (2002).
The details of the geoid undulation are determined
by a convolution of the wavelet transform of the
gravity anomalies with an integral kernel, which
itself results from a convolution of the Stokes’s
function with the wavelet functions of scalej. The
integral kernel is illustrated in Fig. 3. Note that it
is finite for small distancesψ, thus no inner-zone
correction is necessary.

Both steps of the MSA are realized by a spherical
convolution. As shown in Sect. 2.1 and equations
(4)–(6), the convolution is equivalent to an integra-
tion over the data region and can be computed exactly
by a 1D Fourier transform. The necessary kernelsΨj

and(S∗Ψ̃)j have to be computed via an infinite Leg-
endre series, see (3). For band-limited wavelet func-
tions, where the Legendre coefficients are unequal 0
only for a bounded range of degrees`, the summation
can be limited to2j+1 − 1. But, nevertheless, the ex-
act computation for everyψ is very time-consuming,
thus a tabulation of the kernels is useful.

Fig. 3. Integral kernel(S ∗ Ψ̃)j(ψ) for smoothed Shannon
wavelet and scalesj = 0 . . . 4

Another problem arises from the infinite summa-
tion in the reconstruction formula (6). The total sig-
nal is recovered by the summation ofall detail sig-
nals. As the spectral content of the data is limited, the
detail signal will vanish for somej, so a truncation
is possible. For practical computations the maximum
scale is given by the sampling theorem. If the band-
width of the wavelet function is smaller than twice
the resolution of the data, aliasing effects will occur.
Consequently, the truncation scalejmax is given by
the chosen wavelet function and the data resolution.

2.3 Comparison of Both Methods

Both methods, Stokes integration and wavelet mod-
elling, are based on Stokes’s formula. The major dif-
ference in methodology consists of the different han-
dling in the frequency domain, leading to a different
computational effort.

More precisely, the integration technique handles
the whole bandwidth of the residual gravity anoma-
lies at once, so only one convolution is necessary.
The wavelet technique first splits the data into sev-
eral spectral bands by a bandpass-filter and then de-
termines the geoid by handling each spectral band
separately. Therefore two convolutions per spectral
band are necessary, whereby the second convolution
is comparable to the Stokes integration.

3 Results

For the application of both methods, 5′×5 ′ terres-
trial gravity anomalies from the European Geoid
Project, see Denker and Torge (1998), were used.
The long wavelength part of the gravity field was
subtracted using the EGM96 model up to degree and
order 360. Furthermore, we subtracted the influence
of the topography, determined by a digital terrain
model, leading to residual gravity anomalies. The



Fig. 4. Detail signalN4 Fig. 5. Detail signalN5

Fig. 6. Detail signalN8 Fig. 7. Sum of detail signalsNj of scalesj = 1 . . . 11

Fig. 8. Geoid undulations determined by Stokes inte-
gration

Fig. 9. Difference between Wavelet and Stokes geoid



computation area can be seen in Figs. 4–9.
All results presented here are based on the

smoothed Shannon wavelet function with a smooth-
ing factor ofh = 0.5, illustrated in Fig. 1. The MSA
was performed up to a maximum scale ofj = 11.

In Figs. 4–6 the detail signals, determined by the
wavelet technique, are shown for scales 4, 5 and 8 as
examples. The figures show a decrease of the wave-
lengths with increasing scale and a varying amplitude
between the scales, which can be attributed to the dif-
ferent energy in the spectral bands.

The sum of all detail signals from scale 1 to 11
is depicted in Fig. 7. This is the final result of the
wavelet modelling. The sum contains all degrees up
to `=2048. A summation up to scale 12 would con-
tain degrees up tò=4096, but the 5′ data resolution
only allows a computation up tò=2160, otherwise
aliasing effects will occur. This leads to an approx-
imation error, i.e, a loss of spectral content, because
the short wavelengths (`=2049–2160) of the residual
gravity anomalies are missing. The differences be-
tween the wavelet result in Fig. 7 and the solution by
classical Stokes integration in Fig. 8 are illustrated in
Fig. 9. The differences show a long wavelength char-
acteristics and have a RMS of 37.1 cm. A possible
cause of this effect may be a long wavelength effect
in the anomalies reconstructed by the wavelets. This
is indicated by the geoid undulations computed from
the gravity anomaly approximation error, see Fig. 10,
which have a similar long wavelength pattern and a
similar RMS of 36.6 cm.

Fig. 10. Geoid undulations from gravity anomaly approxi-
mation error

The evaluation of the final results by 166 inde-

pendent GPS and levelling control points of the
UELN (United European Levelling Net), see Ihde
et al. (2000), leads to similar results for the Stokes
and wavelet method. The bias corrected RMS of the
differences between GPS/levelling and the computed
geoid undulations are listed in Table 1. The RMS of
the wavelet technique is slightly better than that of
the Stokes integration.

Table 1. RMS of differences between GPS/levelling and
the computed geoid undulations. Units are cm.

Method RMS

Stokes Integration 49.2
Wavelet Modelling 41.0

4 Summary
In this paper we have shown the similarities but also
the differences in methodology of Stokes integration
and wavelet modelling in transferring gravity data to
geoid undulations.

The main similarity is that both techniques are
based on Stokes’s formula. From the differences
between both methods arise the pros and cons of
each technique. The first difference is the computa-
tional effort. The wavelet technique takes approx.
2j times more time than Stokes. The efficiency
may be improved by reducing the integration limits,
adapting the localization property of the wavelet
function used. The second difference is related to
the properties of the kernels. Stokes’s kernel is
defined via a closed formula, but is infinite atψ = 0,
requiring an inner-zone correction. The wavelet
kernels are defined by a series expansion. The use
of band-limited wavelets and accurate tabulating is
necessary to ensure exact and efficient computations.
Furthermore, one gains advantage of the finiteness
of the wavelet kernels atψ = 0, making further inner
zone corrections unnecessary.

A problematic aspect of the wavelet method is its
truncation error, arising from the finite summation of
the details. This can be reduced by a balanced rela-
tion between data resolution and spectral content of
the residuals. When raising the data resolution the
aliasing effects will be postponed to higher scales,
where almost no signal is contained in the residuals
due to the terrain reduction. Thus the truncation error
will decrease.

The most important advantage of MSA is its great
analysis potential, which is, e.g., very useful for the
determination of ideal combination solutions from



global gravity field models and terrestrial gravity
data.
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(2000). The Height Solution of the European Ver-
tical Reference Network (EUVN). Online-Paper
ftp://ftp.leipzig.ifag.de/pub/euvn/
EUVN-Height-Solution.pdf .

Jawerth, B. and Sweldens, W. (1994). An overview of
wavelet based multiresolution analyses.SIAM Rev.,
36(3):377–412.
http://cm.bell-labs.com/who/wim/
papers/overview.ps.gz .

Liu, Q. and Sideris, M. (2003). Wavelet evaluation of
the Stokes and Vening Meinesz integrals.Journal of
Geodesy, 77(5-6):345–356.

Schmidt, M. (2001).Grundprinzipien der Wavelet-Analyse
und Anwendung in der Geodäsie. Shaker, Aachen.

Schmidt, M., Martinez, W., and Florez, J. (2002). General
Scheme for the Computation of Regional Geoid Undula-
tions Using Spherical Wavelets. In Drewes, H., Dodson,
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