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INTRODUCTION 
 
The incomplete knowledge of the atmospheric composition and dynamics along the signal path is still an accuracy 
limitation for GNSS-based parameter estimation. In fact, the dynamic processes in the atmosphere induce correlated 
wave propagation effects on GNSS signals. Usually, these correlations are not modelled in the variance-covariance-
matrix (VCM) of the observations. Hence, too optimistic uncertainty measures are obtained for GNSS derived 
parameters like point positions or estimated zenith wet delays.  
 
Refractivity fluctuations in the troposphere are a prominent example for sources for such physical correlations. Based 
on turbulence theory, the authors have proposed the structure of a VCM that adequately explains such correlations. The 
magnitudes of the VCM elements depend not only on the satellite-antenna geometry (expressed by the station 
separation, the azimuths and elevation angles of the satellites) but also on the prevailing atmospheric conditions. The 
latter ones can be parameterised, e.g. by the wind velocity and direction, the so-called structure constant of the 
refractivity, Cn

2, and the outer scale length, L0. In this paper, we analyse how the wind velocity and direction influence 
the structure of our VCM and the correlation and decorrelation processes reflected in the VCM. 
 
MATHEMATICAL DESCRIPTION OF VARIANCES AND COVARIANCES INDUCED BY 
REFRACTIVITY FLUCTUATIONS 
 
Turbulence theory [1] provides suitable concepts to mathematically handle the random fluctuations of the refractivity 
and their impact on phase measurements of space geodetic microwave techniques like Very Long Baseline 
Interferometry (VLBI) or Global Navigation Satellite Systems (GNSS, e.g., GPS GLONASS or Galileo). In the lower 
atmosphere, the integration of the refractivity (steady-state part) along the lines-of-sight leads to the slant tropospheric 
delays. The refractivity fluctuations yield random phase fluctuations which can be assessed by a fully populated VCM. 
In addition, this matrix can be interpreted as the VCM of the tropospheric slant delays. 
 
A common-used approach for the formulation of such a VCM of the tropospheric delays is the integration of the 
refractivity structure function Dn along the lines-of-sight, cf. [2] for the VLBI configuration. For an overview on the 
subsequent work which is based on this approach refer to [3]. In our development [4] however, we start with a 
description of the spectrum of refractivity fluctuation yielding a more general description than the structure function-
based approach. In the following we briefly summarize our developments of a VCM for GPS phase observations 
induced by refractivity fluctuations. For more details please refer to [4]  
 
We use the von Karman spectrum to express the spectrum of refractivity fluctuations Φn [1, p.30ff]. It is mathematically 
more convenient than the initial formulation of the spectrum by Kolmogorov since it avoids singularities for 0κ → . 
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where κ denotes the wavenumbers, 0 02 / Lπκ =  is the wave number corresponding to the outer scale lengths 0L , and 
2

nC  the structure constant of refractivity that expresses the strength of the turbulence. From Kolmogorov’s dimensional 



analysis [1, p.37ff] it is known that for the inertial subrange which is bounded by 0L  and 0 2 / Sl π κ=  a spectral index 
11

3ν = −  holds.  
 
Since the turbulent medium is far to be a homogeneous and isotropic random medium as implicitly assumed in (1), we 
have to extend this representation twice: (i) Using a 3d spectrum inhomogeneities are taken into account. (ii) In a first 
approximation anisotropy is considered by introducing a different scaling of each of the three wavenumbers yielding so-
called scratched wavenumbers, cf. [4]. 
 
The integration of the refractivity variations along the lines-of-sight allows to relate the spectrum of refractivity 
expressed by the Fourier wavenumber decomposition [1, p.136ff] to the phase covariances between two points A and B 
which equals the covariances of the tropospheric delays. For the most general case, the covariance between the GNSS 
phase observation ( )i

A Atϕ  from station A to satellite i at epoch tA and the phase observation ( )j

B Btϕ  from station B to 
satellite j at epoch tB reads 
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where  
 ( ) ( )2 1

j B i
B A Ads t dsΔ −−d = r + ρ v r          (3) 

denotes the vector separating the integration points, i j
A B,r r  the vectors of lines-of-sight between the station A and the 

satellite i, and the station B and the satellite j, respectively. The vector B
Aρ  gives the station separation (baseline), and 

1 2ds ,ds  are the integration increments along the lines-of-sight. The 3d vector of wavenumbers is denoted by κ.  
 
Temporal correlations are taken into account using Taylor’s hypothesis of frozen turbulence, cf. [1, p.240ff], i.e. by 
assuming that the turbulent variations travel in wind direction with the constant wind velocity v > 0. This constant wind 
vector is parameterized in a topocentric coordinate system as:  
 ( )Tv cos A cos E sin A cos E sin E ,=v        (4) 
where A, E denote the wind direction in azimuth and elevation. Since the model (2) is based on the separation distance 
of the integration points, the temporal separation B At t tΔ = −  of two measurements is transformed in a spatial 
separation by multiplication with the wind velocity vector t= ΔΔ v see [1, p.49, 162ff] for a detailed discussion. 
 
The integrations in (2) about the three wavenumbers can be solved analytically [4], yielding 
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where Γ denotes the gamma function and K the modified Bessel function of second kind (MacDonald function), [5]. 
The integration along the slant lines-of-sight is changed in an integration with height, which enters the elevation angles 

i j

A B,ε ε  of the satellites and the vertical increments 1 2dz ,dz . The scalar d denotes the distance separating the actual 
integration points. Further details can be found in [4]. It is worthwhile noting that (5) must be evaluated numerically and 
that (5) represents a more general description of the covariance than that one given in [2]. This can be shown using the 
small argument approximation of the integral kernel in (5), cf. [4]. 
 
For the variances the integration collapses and an analytical formulation was obtained, cf. [4]  
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where F denotes the hypergeometric function [5]. The dimensionless argument z is given by 0z p H / sin= κ ε , where 
the factor p describes the impact of anisotropy on the variance cf. [4] for further details. 
 
With (5) and (6) a new structure for a VCM is provided that describes the impact of turbulent fluctuations of the 
refractivity on the phase observations. Consequently, this VCM can be interpreted as the VCM for tropospheric delays. 
Without loss of generality the results can be adopted for the VLBI or INSAR configuration. This VCM gives many 
insights for the understanding of physical correlations between GNSS phase measurements, some of them are discussed 
in [4]. In the following section we will focus on the impact of the wind velocity and direction on the VCM.  
 
IMPACT OF THE WIND VELOCITY AND DIRECTION ON THE VARIANCE-COVARIANCE MATRIX 
 
The wind velocity and direction are introduced in the model (2) by (3) to transform the temporal separation of GNSS 
phase observations into a corresponding spatial separation using Taylor’s hypothesis of frozen turbulence. From (5), it 
is obvious that the magnitude of the covariance and consequently the correlation between two GNSS phase observations 
(or tropospheric delays) are determined by the separation distance d between the corresponding rays or wavefronts, cf. 
[4]. Besides the differences in the vectors of lines-of-sight ( j i

B A−r r ) and the (possible) station separation ( B
Aρ ), the 

distance due to the temporal spacing of the observations ( tΔv ) has to be taken into account in (3). If we considered an 
arbitrary but fixed common height of both integration points (e.g. 1 km), we can evaluate the distance d and its 
evolution over the time. In particular, we can analyse the contribution of each of the components of d to the final 
distance.  
 

 
Fig.1. Illustration of the geometric and atmospheric contribution to the separation distance 

 
Fig. 1 shows such a situation for one station and one satellite. We are now interested in the temporal evolution of the 
separation distance between to distinct epochs t1 and tn. The white circles indicate the intersection of the lines-of-sight 
vectors at each epoch with the plane in constant height. The epochs are assumed to be equidistant.  
 
For the temporal separation 1iT t tΔ = −  between the first observation and an observation at epoch ti, the distance 
between the first white circle and the ith circle represents the geometric contribution to the separation distance which is 
due to the satellite movement on its orbit. For any temporal variation k mT t tΔ = − the corresponding geometric 
contribution can be represented by the distance between the kth and mth white circle.  
 
Please note that the geometric contribution changes non-uniformly over time. This is due to the different velocities of 
the satellites on its orbit: the minimum is reached near the zenith and maximum velocities are obtained at low elevation 
angles. These velocity differences are here reinforced by our representation on a plane at a constant height. In 
conclusion, for a given time interval tΔ  minimum geometric contributions are obtained at the zenith. They increase 
non-uniformly with decreasing elevation angles and leads to maximum geometric contributions at low elevation angles. 
We can easily extend these geometric considerations to more than one station and one satellite.  
 
In a second step, the wind velocity is considered by superimposing the geometric and the atmospheric contribution. 
This second part is motivated by Taylor’s hypothesis of frozen turbulence that assumes that the turbulent structure 



travels with a constant horizontal velocity over the region. The atmospheric contributions is parameterized by the 
product of the wind vector with the temporal separation t= ΔΔ v . In Fig. 1 the corresponding contributions for a 
unique given time interval tΔ  are represented by the black arrows. The vector addition leads to the black circles, which 
indicate the virtual intersection points which should be used for the computation of the separation distance.  
 
Depending on the wind direction, the superposition of both contributions can increase or reduce the values of the 
separation distance compared to that one obtained from the geometric considerations only. In case of Fig.1 an additive 
superposition is obtained. In addition, the separation distance changes now more uniformly with time.  
 
A rough estimate of the possible magnitudes of the different contributions (geometric contribution including station 
separation and the atmospheric contribution) shows that even for moderate wind velocities of some m/s, the 
atmospheric contribution quickly dominates the total separation distance. Consequently the wind velocity - in 
combination with the wind direction – governs the correlation and decorrelation process which will be shown in the 
following.  
 

Fig.2 skyplot 

 
In order to show how these effects are represented in our VCM model, we simulate the values of the VCM for an one 
hour segment with a sampling rate of 1 s for a real satellite configuration. We consider two basic scenarios: (S1) no 
wind velocity is applied and (S2) a wind velocity of 4 m/s in the azimuth A =80° is applied. The parameter values used 
for the structure constant, outer scale length, etc, are reported in [4]. The skyplot for the resulting 3600 epochs is shown 
in Fig. 2. The satellites are numbered by their PRN codes and the asterix indicates the starting point during the 1 h 
segment. In addition, in Fig. 2 the wind direction is indicated.  
 

 
Fig. 3. Comparison of the separation distances for both scenarios for the PRN5 

 



In the following we focus on the satellite PRN5. Fig. 3 shows the variations of the intersection points in a horizontal 
plane at 1 km height for both scenarios: For S1 only the geometric contribution is realised which leads to short 
separation distances between the observations. Consequently high covariances and correlations between the 
observations will be obtained. For S2 the atmospheric contribution is superimposed which clearly dominates the length 
of the final separation distance. Consequently, for long temporal separations the covariances are very small, and the 
observations are completely decorrelated which reflects more realistically the actual behaviour. 
 
(a) (b) 

Fig.4. Comparison of the resulting correlation matrices for PRN5, (a) Scenario 1, geometric contribution only, (b) 
Scenario 2, superposition of geometric and the atmospheric contribution. 

 
Fig. 4 compares this impact for the 3600 x 3600 correlation matrix of the observations. Fig. 4(a) shows the results for 
scenario S1 (geometric contributions only), Fig. 4(b) the results for S2 (superposition of atmospheric and geometric 
contributions). Dark grey values indicate strong correlations. The white dashed lines in Fig. 4(a) are added to emphasize 
the non-uniformity of the increase of the separation distance for the considered setting satellite PRN5. At the beginning 
of the exemplary 1 h segment the satellite PRN5 is at moderate elevation angles (45°) and sets to elevation angles of 
15°, cf. Fig.2. At moderate elevation angles, the velocity of the satellite is slower that at low elevation angles yielding 
shorter separation distances for the same temporal separation interval and hence higher correlations. Consequently, the 
lines of an equal amount of correlations are not parallel to the main diagonal. In addition due to the small resulting 
separation distances the overall correlation level is unrealistically high. The correlations are rarely smaller than 50%, 
even for long temporal separations of 3600s.  
 
In Fig. 4(b) the situation completely changes. Much larger separation distances lead to a decorrelation of consecutive 
observations after about 300 s. The geometry of the setting satellite is no longer reflected in the correlation matrix since 
the separation distances are dominated by the atmospheric contribution which is uniform over time, i.e. the lines of 
equal amount of correlations are parallel to the main diagonal. Finally this diagonal structure is mathematically easier to 
handle. This is a non-neglectable advantage for the necessary matrix inversion during the data analysis steps and 
parameter estimation procedures by a least-squares adjustment. 
 
CONCLUSIONS AND OUTLOOK 
 
In this paper, we summarized our development based on turbulence theory of variances and covariances of space-
geodetic phase observations (VLBI or GNSS carrier phase observations) that adequately assess refractivity fluctuations 
in the troposphere. The obtained fully populated VCM of the observations is a generalisation of the model given by [2]. 
Furthermore it can be interpreted as the VCM for the slant tropospheric delays. In a second part, it was shown that the 
wind velocity and direction play a key role for the structure of the VCM and the associated correlation matrix. In fact, 
the atmospheric contribution dominates the values of the separation distance between the observations yielding a strong 
decorrelation of the phase observations and a tri-diagonal structure of the VCM. 
 



The comparison of the correlations predicted be the model (5) and (6) and empirical auto- and cross-correlation 
functions is investigated in [3]. Using the double-differenced GPS phase data from a specially designed network, a good 
agreement between the empirical auto- and cross-correlations functions and the correlation obtained from the model is 
found when using the geostrophic wind which can be easily computed from isobaric maps. Consequently, the new 
VCM (5,6) adequately models physical correlations and covariances that are induced by refractivity fluctuations in the 
troposphere.  
 
The development of new GNSS such as Galileo will on the one hand contribute to enhance the temporal and spatial 
repeatability of the satellite passes and therefore improve the troposphere sensing and understanding the complex 
processes in the troposphere. On the over hand for high precision application and for a meaningful interpretation and 
validation of the estimated parameters physical correlations between the GNSS observations cannot be neglected any 
longer. Consequently, an extended variance-covariance model such as the one proposed in this paper should be 
implemented. 
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