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ABSTRACT

Turbulent motions within the atmospheric boundary layer
generate high-frequency variations of the water vapor con-
tent of the air and thus of the refractivity index field. Since
electromagnetic waves are sensitive to such variations, at-
mospheric turbulence consequently causes phase fluctua-
tions which can also be sensed by GNSS signals. In ad-
dition, parameters derived from GNSS signals such as es-
timated tropospheric signal delays can be used to analyse
effects of atmospheric turbulence.

In the following we provide some background of at-
mospheric turbulence theory and we describe a simulation
method to generate variations of slant tropospheric delays.
The temporal stochastic behaviour of these simulated delays
is expressed in terms of temporal structure functions and is
compared with their theoretically expected behaviour. As
an example we present time series of simulated slant tro-
pospheric delay variations for a realistic GPS observation
scenario.

INTRODUCTION/
ATMOSPHERIC TURBULENCE

Signals of Global Navigation Satellite Systems (GNSS),
as well as all other electromagnetic waves are effected by
atmospheric attenuation, scintillation, and delay (Spilker
1996). Especially the dry (hydrostatic) and wet (non-
hydrostatic) signal delays are one of the main error sources
which have to be adequately accounted for when using
GNSS signals for e.g. precise surveying or timing purposes.
These tropospheric delays show both long periodic and
short periodic variations in the range from months to hours
as well as from minutes to seconds (and even less). The
short periodic behaviour is caused by high-frequency varia-
tions of the refractivity indexn which are generated by tur-
bulent air motions within the first approximately 2000 [m]
of the atmosphere (i.e., the atmospheric boundary layer).

These refractivity variations yield random phase fluctu-
ations which should be accounted for within the stochastic
model of the GNSS data analysis. In addition, these phase
fluctuations can be used to study the turbulent medium the
signal has passed.

In order to provide a mathematical description of the ran-
dom refractivity variations the refractivity indexn(x, t) at
a locationx and at timet is separated inton = n0 + ∆n,
with a steady state componentn0 and a highly variable∆n
whose variations are considered to be generated by a com-
plex superimposition of swirls (called ’eddies’) that inter-
act nonlinearly to create random, chaotic motions. Due
to this random behaviour no deterministic description has
been found yet (Wallace and Hobbs 2006). The net effect,
however, can be described statistically via the energy spec-
trum, which relates the amount of total turbulence kinetic
energy to the different scales of turbulence elements (’ed-
dies’). Various authors derived analytical models for the
most important parts of this spectrum (inertial subrange).In
the following, the von Karman spectrum is used (Wheelon
2001):
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n is the so-called refractivity structure constant,
κ = 2π/l indicates the wavenumber corresponding to eddy



sizel, κ0 andκs are the wavenumbers corresponding to the
inner and outer scale lengthsl0 andL0, respectively. More
details about atmospheric turbulence and wave propagation
in turbulent media can be found in e.g. Stull (1988) and
Wheelon (2001).

In the following we show how high-frequency variations
of tropospheric delays can be simulated using parameters of
atmospheric turbulence and we assess the stochastic prop-
erties of those simulated slant delay time series. These
simulations form the basis for the assessment of turbu-
lence effects observed in tropospheric delays derived from
real GNSS data. Another motivation for the analysis of
tropospheric delay variations derived from high-frequency
GNSS data is due to the increasing observation rates (1 to
100 [Hz]), which are -for example- required for navigation
purposes or earthquake monitoring. At these data rates the
correlating effects of the tropospheric fluctuations can no
longer be omitted.

TEMPORAL STOCHASTIC BE-
HAVIOUR OF TROPOSPHERIC DE-
LAYS

The von Karman spectrum (Eq. 1) follows a so-called
power-law behaviour with an exponentα = −11/3 (Ag-
new 1992). This shows that atmospheric turbulence is
characterised as a non-stationary stochastic process which
should thus not be expressed in terms of (auto-)correlation
functions or power spectral densities (Kasdin 1995). A
more appropriate tool to assess the temporal behaviour of
a non-stationary processX is the temporal structure func-
tion (Wheelon 2001)

DX(τ) = 〈[X(t + τ) − X(t)]
2〉, (2)

with 〈·〉 denoting an ensemble average andτ indicating the
time lag between two values ofX . The temporal differ-
encing removes data trends and thus generates a difference
process which is usually stationary even if the original time
series is not stationary.

A typical example of a temporal structure function
loglog-plot is shown in Fig. 1. The loglog-plot allows an
easy association of the slope of the structure function to the
power-law exponent and thus allows an easy identification
of the relevant stochastic process. Theoretically, for small
time lagsτ of several seconds (region A) structure func-
tion values should be close to zero. In practice, however,
for those time lags the curve often starts with a zero slope
and thus indicates the presence of white noise. For medium
ranges (region B) the dominant noise type of the process
can be assessed by the slope of the structure function. For
turbulence processes, this region typically shows slopes of
2/3 to 5/3. For larger time lagsτ (region C) the structure
function approaches an asymptotic value (also referred to as
sill) of 2 · σX , i.e., twice the variance ofX . For these time
lags with zero slope, the data is considered as being uncor-
related (so-called saturation region). In geostatisticalter-
minology (Olea 1999), the structure function is commonly
called (semi-)variogram with the time lagτ , at which the
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Figure 1: Example for temporal structure function be-
haviour.

structure function reaches the constant value (sill), referred
to asrange.

An explicit expression for the temporal structure function
of phase measurements is provided by (Wheelon 2001) as
follows:

Dϕ(τ) = DT (τ) = 1.564Rk2C2
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with R denoting the length of the propagation path,k being
the respective wavenumber of the microwave signal,κ0 be-
ing the wavenumber corresponding to the outer scale length
andv being the wind speed. The unit of this explicit struc-
ture function is [rad], thus dividing byk2 again yields the
structure function in a metric unit. Since we consider only
tropospheric fluctuations, Eq. (3) is equivalent to the struc-
ture function of tropospheric delays. However, for real data,
Dϕ(τ) also contains contributions from additional stochas-
tic processes, such as e.g., residuals receiver clock errors or
multipath effects.

Figure 2 shows the explicit temporal structure function,
Eq. (3), for various typical turbulence parameter sets eval-
uated for a fixed observation geometry with an elevation of
13.5 [◦].

Curve 1 represents a structure function for average tur-
bulence conditions (with average fluctuations/sill of≈ 1.2 ·
10−6 [m2] and a range of≈ 200 [s]) and serves as a ref-
erence set which the other curves are compared with. Re-
ducing the integration heightH by a factor of 1/2 (i.e., to
1000 [m], curve 2) also reduces the fluctuations/sill by the
same factor to≈ 0.6 · 10−6 [m2] and slightly reduces the
range to approximately 180 [s].

Increasing the wind speedv from 8 [m/s] to 15 [m/s]
(curve 3) does not affect the sill but significantly reduces
the range (and thus the correlation length) by approximately
100 [s]. In other words: Increasing wind speed acts decor-
relating on both phase fluctuations and tropospheric delays
(details will be given below).

Increasing the outer scale lengthL0 from 3000 [m] to
6000 [m] (curve 4) increases both the average fluctuations
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Figure 2: Explicit temporal structure functions of slant tropospheric delays for typical conditions of atmospheric turbulence for
a fixed observation geometry with an elevation of 13.5 [◦] (left: linear axes, right: logarithmic axes).

(i.e., the sill) to≈ 3.7·10−6 [m2] and the range to≈ 300 [s].

Finally, increasing the refractivity structure constant to
C2

n = 1.0 · 10−14 [m−2/3] (i.e., by a factor of 3.3, curve 5)
linearly scales the fluctuations/sill by the same factor. Com-
pared to the average parameter set (curve 1), the range has
not been changed.

In addition, for all parameter combinations considered,
the explicit temporal structure functions show a clear 5/3
power-law behaviour for the first≈ 80 [s] (see loglog-plot
on the right hand side of Fig. 2). Depending on the speci-
fied turbulence parameters (especially the outer scale length
L0) a continous decrease of the exponent can be seen. At
a maximum of approximately 500 [s] the exponent reaches
zero (for these examples).

In the following we will demonstrate a simulation proce-
dure for tropospheric delay variations and we will assess the
stochastic properties of the generated time series in termsof
their temporal structure functions.

COVARIANCE EXPRESSION OF
SLANT TROPOSPHERIC DELAYS

Common procedures for the simulation of time series with
a predefined stochastic behaviour are based on Cholesky
decompositions or eigenvalue decompositions of variance-
covariance matrices whose elements define the scatter and
the covariances (and thus the correlations) between the val-
ues to be simulated (e.g. Johnson and Wyatt 1994, Searle
1982).

Variances and covariances of tropospheric delays can be
derived by integrating the spectrum of refractivity variations
along the lines-of-sight (Wheelon 2001). A general covari-
ance expression for tropospheric delays has been derived by
Schön and Brunner (2008). Based on the von Karman spec-
trum and the assumptions of height-independentC2

n, local
isotropy, uniform wind speed and wind direction this for-
mulation describes the covariance of two tropospheric slant
delaysT i

A(tA) andT j
B(tB) at two stationsA andB, to two

satellitesi andj and at two epochstA andtB. In its most
general formulation the co-variance expression reads:
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whereΓ denotes the gamma function andK the modified
Bessel function of second kind. In order to analyse the im-
pact of wind speed and wind direction on explicit temporal
structure functions and on simulated slant delay variations,
special attention will be paid to the parameterd which is
the length of the vectord = r2 + ρ − v∆t − r1 between
the actual integration points. This vector is a function of
the line-of-sight vectorsr1 andr2, the baseline vectorρ,
the wind vectorv and the time difference∆t between two
tropospheric delays. The value ofd determines the value of
the integration kernel and thus the covariance between two
tropospheric delays as well as its temporal variation. The
temporal evolution ofv∆t is the most variable contribution
to d.

In the following we try to illustrate the variation ofd
for the basic case of one station and one satellite. Conse-
quently,ρ = 0 andr2 andr1 are the unit vectors pointing to
the same satellite at different epochsti andtj , respectively.
The contributions to the vectord can be separated into (i) a
geometric partresulting from the varying directions of the
lines-of-sight with time, and (ii) theatmospheric part.

For the temporal separation∆t = ti − t1 between the
first observation and an observation at epochti, the distance
between the first white circle and the i-th white circle repre-
sents the geometric contribution to the separation distance
(at a given height) which is due to the satellite movement
on its orbit. For any temporal variation∆t = tk − tm the



Figure 3: Visualisation of geometric and atmospheric con-
tributions to the separation distanced.

corresponding geometric contribution can be represented by
the distance between the k-th and the m-th white circle.

In addition, the atmospheric contribution is considered
and superimposed onto the geometric one. This contribu-
tion stems from the assumption of ’frozen turbulence’ (Tay-
lor’s hypothesis), i.e., that a volume of atmospheric turbu-
lence structures travels with a constant velocity over the sen-
sor. These contributions are parameterised by the product of
the wind vector and the temporal separation∆ = v∆t. In
Fig. 3 these contributions for a unique time interval∆t are
represented by the black arrows. The vector addition leads
to the black circles, which indicate the virtual intersection
points which should be used for the computation of the sep-
aration distance.

Depending on the wind direction, the superposition of
both contributions can increase or reduce the values of the
separation distance compared to that one obtained from the
geometric contributions only. In case of Fig. 3 an additive
superposition is obtained.

A rough estimate of the possible magnitudes of the dif-
ferent contributions (geometric contribution including sta-
tion separation and the atmospheric contribution) shows that
even for moderate wind velocities of some [m/s], the atmo-
spheric contribution quickly dominates the total separation
distance. Consequently the wind velocity -in combination
with the wind direction- governs the correlation and decor-
relation process. For more details, the reader is referred to
Schön and Brunner (2007) and Schön and Brunner (2008).

ANALYSIS OF SIMULATED TROPO-
SPHERIC DELAY VARIATIONS

Using real or simulated observation geometries as well as
adequate turbulence parameters a fully occupied variance-
covariance matrixΣT of tropospheric delaysT can be set
up to generate simulated tropospheric delay variations. In
the following, these variations will be simulated by using an
orthonormal matrixG containing the eigenvectors ofΣT ,
a diagonal matrix

√
Λ containing the square roots of the

eigenvalues ofΣT on its main diagonal, and a vectorx of
gaussian random numbers with zero mean and unit variance
via (Searle 1982):

y = G
√

Λx. (5)

Note that for the following simulations, each different set
of five realisations has been generated using the same set of
Gaussian vectorsx (see Eq. (5)).

For the simulation of slant tropospheric delay variations
a realistic geometry of a rising GPS satellite is used (see also
Vennebusch and Schön 2009). During an observation period
of 1000 [s] (≈ 17 [min]) the satellite rises from 10 [◦] to
17 [◦] elevation at an azimuth of 201 [◦]. Using a sampling
rate of 0.1 [Hz] the entire observation period thus yields
100 observations. Figures 4 and 5 show variance-covariance
matrices obtained by numerically integrating Eq. (4) for var-
ious sets of turbulence parameters. Parameter set 1 discribes
an average turbulence condition with refractivity structure
constantC2

n = 0.3 × 10−14 [m−2/3], outer scale length
L0 = 3000 [m], wind speedv = 8 [m/s], integration height
H = 2000 [m] and wind direction (azimuth)αv = 0 [◦].
This parameter set serves as a reference for comparisions of
the impact of variations in the turbulence parameters on (co-
)variances, correlations, slant tropospheric delay variations,
and their temporal structure functions.

- Parameter set 1: For this parameter set the variances
vary between0.75·10−6 [m2] for the lowest elevations
(10 [◦]) and 0.48 · 10−6 [m2] for the highest eleva-
tions (17 [◦]). Due to the changing geometry both the
variance-covariance matrix and the correlation matrix
do not have a clear band structure. This property is
also reflected by the moderate variations in the respec-
tive anti-diagonal plots. For example, after 10 epochs
an average correlation of 0.44 with an average scatter
of 0.04 is visible. After 20 epochs the average corre-
lation coefficient is 0.13 with a scatter of 0.04.

The simulated slant tropospheric delay variations vary
in the range of±2 [mm] with an average variance of
4.6 ·10−7 [m2]. All temporal structure functions show
a clear 5/3 power-law behaviour for the first180 −
200 [s]. One temporal structure function (of this and
of the other parameter sets) shows a negative slope for
time lags larger than 200 [s]. This is caused by the
characteristics of the respective random vectorx used
for the simulations.

- Parameter set 2: Changing the wind azimuthαv from
0 [◦] to 90 [◦] has a significant decorrelating ef-
fect on the simulated tropospheric delays. Compared
to parameter set 1, the variances remain unchanged
while the covariances decrease much faster and show
smaller variations. This is also reflected in reduced
correlation lengths of 0.11 after 10 epochs (100 [s])
and 0.01 after 20 epochs (200 [s]) (both with a negli-
gible scatter).

Compared to the first parameter set, the simu-
lated slant tropospheric delay peak-to-peak variations
hardly changed but the entire time series show a much
rougher behaviour which obviously agrees with the
reduced correlation lengths. The average variance
is ≈ 6 · 10−7 [m2], which is also reflected in the
larger values of the temporal structure functions. The
slopes of the temporal structure functions, however,



are generally smaller than 5/3, especially for small
time lagsτ . This behaviour results from the increased
roughness (reduced correlation) of the simulated time
series yielding an apparent high-frequency noise con-
tribution.

- Parameter set 3: Increasing the wind speedv from
8 [m/s] to 15 [m/s] also has a decorrelating effect on
tropospheric delay variations. This can again be ob-
served in variances which are similar to those of the
previous parameter set and by quickly decreasing co-
variances leading to average correlation values of 0.15
after 10 epochs and 0.01 after 20 epochs (and approx-
imately the same correlation scatter as for parameter
set 1).

The simulation procedure generates tropospheric de-
lay variations with increased average variance (of≈
6.5 · 10−7 [m2]) and consequently larger temporal
structure function values. Again, compared to param-
eter set 1, no exact 5/3 power-law behaviour can be
observed for small time lagsτ .

- Parameter set 4: The impact of changing the outer
scale lengthL0 from 3000 [m] to 6000 [m] can be
observed in larger variances (of≈ 2.3 · 10−6 [m2] at
low elevations to≈ 1.3 · 10−6 [m2] at higher eleva-
tion) and longer correlation lengths. After 10 epochs
the average correlation is still 0.7 and 0.38 after 20
epochs with scatter variations of 0.02 after 10 epochs
and 0.04 after 20 epochs.

Due to the larger (co-)variances the peak-to-peak vari-
ations of the simulated tropospheric delay variations
increased to approximately±3 [mm] with a rather
smooth entire behaviour. This also leads to tempo-
ral structure functions with a clear 5/3 power-law be-
haviour.

COMPARISONS AND DISCUSSION

Three of the temporal structure functions of simulated tro-
pospheric delays (Fig. 4 and 5) can be compared to the ex-
plicit temporal structure functions shown in Fig. 2:

- The temporal structure function of tropospheric delays
simulated with average turbulence parameters (sec-
tion 1 in Fig. 4) shows the same 5/3 power-law be-
haviour and approximately the same fluctuations/sill
of 1.2 · 10−6 [m2] and a similar range of≈ 200 [s]
as the first curve in Fig. 2. However, for small time
lags τ the values of the explicit temporal structure
function are approximately four times larger than the
corresponding values of the structure function of sim-
ulated slant delays.

- Comparing the structure function of section 3 (Fig. 5,
using a wind speed of 15 [m/s]) with the structure
function of section 1 and with the third explicit tem-
poral structure function shows that the structure func-
tion of simulated tropospheric delays behaves as pre-
dicted: The average fluctuations/sill remains almost

unchanged and structure function values for small
time lagsτ are larger when using higher wind speed.
The same holds for the range, i.e., for a larger wind
speed the range (and thus the correlation lengths) de-
crease. But, as for section 1, explicit temporal struc-
ture function values for small time lagsτ are about
three times larger than those of simulated slant delays
(curve 3).

- Finally, a comparison of the structure function of sec-
tion 4 (Fig. 5, for increased outer scale length) with
the one of section 1 (Fig. 4) shows that for small time
lags values the corresponding structure functions al-
most perfectly agree. In addition, for larger outer scale
lengths and for larger time lags larger variations/sills
are observed. This is the same behaviour as observed
in the corresponding explicit temporal structure func-
tions. But again, for small time lags the explicit tem-
poral structure function values are approximately four
times larger than those of the simulated slant delays.

In summary, the general behaviour (e.g., the 5/3 slope
and the variations due to parameter changes) of the structure
functions of simulated tropospheric delays agrees with the
general behaviour of the explicit temporal structure func-
tions. However, especially for small time lagsτ discrepan-
cies of a factor of almost five are observed. This needs to be
further investigated.

SUMMARY & OUTLOOK

In this paper we investigated the simulation of tropospheric
slant delays based on turbulence theory. Using different
values for turbulence parameters (such as the refractivity
structure constantC2

n, the outer scale lengthL0, the inte-
gration heightH and the wind speedv) the generated non-
stationary time-series change accordingly. In our example
scenario, a decorrelation (i.e., a noisier time series) is ob-
tained by increasing the wind speedv and/or the outer scale
lengthL0.

The stochastic behaviour of these time series are best as-
sessed by temporal structure functions which showed the
expected behaviour, i.e., a 5/3 power-law behaviour and
similar responses to parameter changes as those observed in
the theoretical expressions of the temporal structure func-
tions.

In future, these results will be compared to the time series
and structure functions of slant delays estimated from real
GNSS phase measurements. Current activities concentrate
on both the estimation of high-resolution (i.e., 1 [Hz]) zenith
tropospheric delays using Precise Point Positioning (PPP)
approaches, and on the analysis of double-differenced phase
observations from specially designed GNSS networks for
the investigation of atmospheric turbulence.
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Figure 4: Variance-covariance matrices, correlation matrices, anti-diagonal plots, simulated slant tropospheric delay variations
and their temporal structure functions. Section 1.) Average turbulence parameters (C2

n = 0.3×10−14 [m−2/3], outer scale length
L0 = 3000 [m], integration heightH = 2000 [m], wind speedv = 8 [m/s] and wind direction (azimuth)αv = 0 [◦]), section 2.)
same as 1.), but wind azimuth increased to 90 [◦].
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Figure 5: Variance-covariance matrices, correlation matrices, anti-diagonal plots, simulated slant tropospheric delay variations
and their temporal structure functions. Section 3.) same as1.), but wind speed increased to 15 [m/s], section 4.) same as1.), but
outer scale lengthL0 increased to 6000 [m].
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