Generation of slant tropospheric delay time series based on turbulence theory

Markus Vennebusch Steffen Schön

Institut für Erdmessung, Leibniz Universität Hannover, Germany

1. September 2009

Motivation

Introduction

Motivation

- Stochastic model Slant delay simulation Analysis objectives
- Simulations

Impact of parameter variations

Summary & Conclusions

Slant tropospheric delay:

- long-periodic variations:
 - caused by e.g. daily hourly variations of temperature, pressure, partial pressure of water vapor, ...
 - mean behaviour described by deterministic models
 (e.g., Hopfield, Saastamoinen, ... & mapping functions)
- short-periodic variations (periods of [min] to [sec]):
 - caused by: turbulent flow in atmospheric boundary layer
 - water vapor variations
 index of refractivity variations
 - ♦ behaviour described stochastically (⇒ Turbulence theory)

Wallace, Hobbs (2006): Atmospheric Science

Motivation

Introduction

Motivation

Stochastic model Slant delav simulation Analysis objectives

Simulations

Impact of parameter variations

Summary & Conclusions

Turbulence theory / 'Wave propagation in turbulent media':

Spectrum of turbulence kinetic energy:

Wallace, Hobbs (2006): Atmospheric Science

von Karman spectrum (\rightarrow non-stationary process):

$$\Phi_n(\kappa) = \frac{0.033 \ C_n^2}{(\kappa^2 + \kappa_0^2)^{\frac{11}{6}}} \propto \kappa^{-11/3}, \quad 0 < \kappa < \kappa_S$$

 C_n^2 structure constant of refractivity $\kappa_0 = 2\pi/L_0$ wavenumber corresponding to outer scale length L_0

 \Rightarrow Stochastic model of GNSS phase observations (can be regarded as stochastic model of slant delays)

Institut für Erdmessung

Stochastic model

Introduction

Motivation

Stochastic model

Slant delay simulation

Analysis objectives

Simulations

Impact of parameter variations

Summary & Conclusions

Turbulence theory-based covariance (Schön/Brunner, JGeod 2007 82(1), pp. 47-57):

$$\begin{aligned} \langle \varphi_A^i(t_A), \ \varphi_B^j(t_B) \rangle &= \langle \tau_A^1(t_A), \tau_B^2(t_B) \rangle = \\ &= \frac{12}{5} \frac{0.033}{\Gamma\left(\frac{5}{6}\right)} \frac{\sqrt{\pi^3} \kappa_0^{-\frac{2}{3}} 2^{-\frac{1}{3}}}{\sin \varepsilon_A^i \sin \varepsilon_B^j} C_n^2 \\ &\times \int \int \int (\kappa_0 d)^{\frac{1}{3}} K_{-\frac{1}{3}}(\kappa_0 d) \ dz_1 \ dz_2 \end{aligned}$$

$\varphi^i_A(t_A)$	Phase observation (station A, satellite i, epoch t_A)
C_n^2	Structure constant (characterises strength of turbulence)
L_0	Outer scale length ($\kappa_0=2\pi/L_0$)
H	Integration height
$arepsilon_A^i$	Elevation of satellite i at station A
d	separation between integration points
K	modified Bessel function
Γ	Gamma function

Generation of slant delay variations

Introduction Motivation Stochastic model Slant delay simulation Analysis objectives Simulations Impact of parameter variations Summary & Conclusions	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Stochastic properties: Temporal structure function / Variogram: $D_n(\tau) = \langle [n(t+\tau) - n(t)]^2 \rangle \propto \tau^{\frac{5}{3}}$
	Jog(grund for the second for the sec
	$\log(\tau)$
l l Leibniz ιο2 Universität ιοσ4 Hannover	Institut für Erdmessung Institut für M. Vennebusch, S. Schön IAG 2009, Buenos Aires, 1. September 2009

5 / 17

Analysis objectives

Introduction

Motivation

Stochastic model Slant delay simulation

Analysis objectives

Simulations

Impact of parameter variations

Summary & Conclusions

Analysis objectives:

Investigation of impact of parameter variations on:

- Variance-covariance matrices and correlation matrices
- Stochastic behaviour of simulated variations of slant delays

Purpose / Motivation:

- Dominant model parameters? (\rightarrow must be precisely known)
- Test of processing strategy
- Basis for analysis of real GNSS data in future

Introduction

Simulations

Scenarios & parameter sets

Impact of parameter variations

Summary & Conclusions

Simulations

ite

Simulation scenarios and parameter sets

Introduction

Simulations Scenarios & parameter sets

Impact of parameter variations

Summary & Conclusions

Scenarios:

Turbulence parameter variations:

C_n^2 $[m^{-2/3}]$	L_0 [m]	v $[m/s]$	H [m]	$\alpha_v \ [deg]$	Comment:
0.3×10^{-14}	3000	8	2000	0	Reference set
5.76×10^{-14}	6000	15	1000	90	
9.0×10^{-14}				180	
				270	

Simulations - zenith scenario

Scenario: zenith, parameter set: 5 (= average turbulence parameters):

Universität

Hannover

00

Erdmessung

Simulations - low elevation

Scenario: low elevation, parameter set: 5 (= average turbulence parameters):

Institut für

Erdmessung

Simulations - rising satellite

Universität

Hannover

Erdmessung

10

100

Scenario: rising satellite, parameter set: 5 (= average turbulence parameters):

Introduction

Simulations

Impact of parameter variations

Summary & Conclusions

Impact of parameter variations

Impact of L_0 variations on mean correlations and average SD-variance:

10

1004

Impact of H variations on mean correlations and average SD-variance:

10

1004

.eibniz

Hannover

10

100

Impact of wind speed variations on mean correlations and average SD-variance:

Impact of wind direction variations on mean correlations and average SD-variance:

l l Leibniz l o 2 Universität l o o 4 Hannover Institut für /

Summary & Conclusions

Introduction

Simulations

Impact of parameter variations

Summary & Conclusions

Summary & Conclusions:

- generation of variance-covariance matrices of slant delays possible
- generation of slant delay variations possible
 - typical variations: \pm 1 3 [mm]
 - correlation lengths: pprox 200 [sec]
- simulated slant delay variations as expected:
 - 5/3 power law for all simulated time series
 - higher variations for low elevations
- superposition of geometric effects and atmospheric turbulence needs further investigation
- now: analysis of real GNSS data

Acknowledgements:

This project is funded by Deutsche Forschungsgemeinschaft (SCHO 1314/1-1).

