

Gekurvte Landeanflüge mit GNSS Untersuchungen zur Navigationsleistung

Franziska Kube und Steffen Schön Institut für Erdmessung | Leibniz Universität Hannover

Motivation und Einleitung

Das Bürgernahe Flugzeug

Forschungsverbund aus Instituten des Deutschen Zentrums für Luft- und Raumfahrt, der Technischen Universität Braunschweig und der Leibniz Universität Hannover Ziele

- 1. Befriedigung der Mobilitätsanforderungen der Industriegesellschaft bei Minimierung des Flächenverbrauchs
- 2. Lärmminderung und Minimierung des Verbrauchs der Primär-Energieressourcen
- 3. Erhöhung der Sicherheit und Überwindung von Kapazitätsengpässen des Luftverkehrs durch Fortschritte in der Automatisierung von Flugzeug und Luftverkehrsfüh-

rung Forschungsschwerpunkte

Integration und Automatisierung der bordseitigen Flugführung und bodenseitigen Luftverkehrsführung durch neue Technologien für Kommunikation, Navigation und Uberwachung

1. hochpräzise flexible GNSS-gestützte An- und Abflugverfahren

Herausforderung

Signalunterbrechungen bei Querneigung des Flugzeugs Erforderliche Navigationsparameter für präzise Landeanflüge können nicht oder nur teilweise

Abb. 1: Keine Signalabschattung bei geradem Landeanflug (a) und Abschattung von Satellitensignalen (grau) bei Querneigung des Flugzeugs in gekurvtem Landeanflug (b)

Herangehensweise

erfüllt werden

- Kombination der Beobachtungen von mehreren, optimal am Flugzeug verteilen GNSS-Antennen zu einer gemeinsamen Flugzeugposition im virtuellen Empfänger
- Optimal bedeutet hier, dass die Antennen so geneigt sind, dass der gemeinsame Sichtbarkeitsbereich aller Antennen vergrößert ist

2. Entwicklung eines virtuellen Multikonstellationsempfängers

Simulationstudie

Identifikation der optimalen Antennenposition auf einem A320

Abb. 2: Airbus A320 Flugzeugmodell mit untersuchten Antennenpositionen

Test verschiedener Szenarien Berechnung der GPS- und Galileo-Konstellation für 44 Anflug-Szenarien durch Variation der Zeit, des Ortes und

Flugversuch

Abb. 5: Forschungsflugzeug Do 128-6 D-IBUF des Institutd für Flugführung (IFF) der TU Braunschweig mit Antennenpositionen und -bezeichnungen.

Abb. 7: Anzahl der Beobachtungen, horizontale und vertikale DOP-Werte

Tab. 4: Mittelwert, minimale und maximale Satellitenanzahl pro Epoche und mittlere DOP-Werte für die horizontale und vertikale Positionierung mit der Einzelantenne und dem virtuellen Empfänger.

	# Beobachtungen						mittlere DOP Werte				
	Einzelantenne			Virtueller Empfänger			Einzelantenne		Virtueller E	Virtueller Empfänger	
Sat. System	Mittel	Min	Max	Mittel	Min	Max	HDOP	VDOP	HDOP	VDOP	
GPS	8	3	11	14	6	18	1.3	2.0	1.0 (-23 %)	1.3(-35%)	
Galileo	7	4	12	13	6	19	1.3	1.9	0.9 (-31 %)	1.3 (-32 %)	
GPS+Galileo	15	9	23	27	13	36	0.8	1.2	0.6 (-25 %)	0.8 (-33 %)	

Mathematisches Modell und Parameter

- Schätzung der Position des virtuellen Empfängers und eines Empfängeruhroffsets je beteiligtem Empfänger in einer epochenweisen linearisierten Kleinste-Quadrate Ausgleichung
- Phasenglättung der C/A-Codebeobachtungen (Filter 100s), Gewichtung der Beobachtungen nach der Elevation, Korrektion von Satellitenuhrfehler und relativistischem Effekt aus broadcast-Ephemeriden, Ionosphäre nach Klobuchar und Troposphäre nach Hopfield
- Korrektion des Hebelarmes zwischen jeder Antenne und der frei gewählten Position des virtuellen Empfängers

Abb. 6: Trajektorie des ca. 70minütigen Flugversuchs vom 11.07.2011 mit farbcodierten Manövern.

für die Einzelantenne und den virtuellen Empfänger während des Flugversuches.

08:10 08:20 08:30 08:40 08:50 09:00 09:10 0 0.6 1.2 1.8 2.4 3.0 Zeit [GPS] - DOY 192 - 2011 VPE [m] (b) VPE

Abb. 8: Zeitreihe und Histogramm des horizontalen (a) und vertikalen (b) Positionsfehlers, als Differenz zur trägerphasenbasierten differentiellen Lösung.

(b) Verschiebung δ_0 .

Abb. 9: Minimal aufdeckbarer Fehler (MDB) als Maß der inneren Zuverlässigkeit (a) und Verschiebung δ_0 aufgrund eines MDB als Indikator der äußeren Zuverlässigkeit (b) der Positionslösung.

Fazit und Ausblick

Mit dem virtuellen Empfänger kann eine kontinuierliche Positionierung gewährleistert werden, auch wenn Satellitensignale bei gekurvten Anflügen z.T. abgeschattet sind.

Die horizontale und vertikale Positionsgenauigkeit (DOP-Werte) ist gegenüber der Einzelantenne um 25 %, bzw. 30 % verbessert

- ► Der vertikale Positionsfehler (VPE) ist gegenüber der Einzelantenne im Mittel um 18 % verringert.
- > Der virtuelle Empfänger zeigt eine verbesserte innere als auch äußere Zuverläsigkeit. Bei gleicher Wahrscheinlichkeit für Fehler 1. und 2. Art können kleinere Beobachtungsfehler aufgedeckt werden.

Literatur	Danksagung
Kube, Franziska, S. Schön und T. Feuerle (2012). GNSS-based Curved Landing Approaches with a Virtual Receiver. In: Proceeding of IEEE/ION Position Location and Navigation Symposium (PLANS) 2012, Myrtle Beach, SC, USA, 23-26 April 2012, S. 188-196	Dieses Projekt wird im Rahmen des Forschungsverbunds "Bürgernahes Flugzeug" durch die Landesregierung Niedersachsen gefördert (Förderkennzeichen VWZN2499, VWZN2551 und VWZN2634). Die Autoren danken Thomas Feuerle, Mark Bitter (Institut für Flugführung, TU Braunschweig) und Robert Geister (Institut für Flugführung, DLR Braunschweig) für die Bereitstellung der Daten.
	Created with LATEX beamerposte

Geodätische Woche 2012 | Hannover

09. - 11. Oktober 2012

Franziska Kube Steffen Schön www.ife.uni-hannover.de {kube, schoen}@ife.uni-hannover.de