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Abstract: For precise GPS point positioning, the incomplete knowledge of the atmospheric 
condition along the signal path still limits the accuracy of the results. In addition, physical 
correlations between GPS observables are induced by the atmospheric dynamics. These 
correlations are usually not modelled in the variance-covariance of the observations yielding 
too optimistic uncertainty measures for GPS derived results.   
 
In this contribution we present the first results of our investigations of the physical 
correlations of GPS signals by means of turbulence theory. The analysis is based on 
undifferenced observed-minus-computed values of GPS phase observations. Since the 
obtained time series are not always stationary, they cannot be analysed by statistical methods 
like autocorrelation functions. However, structure functions adequately deal with locally 
stationary time series. Structure functions show a power law behaviour. The power law 
exponent characterises the dominant stochastic process. Using temporal structure functions, 
the change of the power law index gives access to the decorrelation time. For the analyzed 
baselines we found value for the decorrelation time of 200s to 400 s depending on the amount 
of turbulent fluctuations encountered along the GPS signal ray paths.  

1. Introduction 
Knowledge about the effective uncertainty of GPS derived results is essential for all high 
precision applications. However, the commonly used stochastic models for GPS observables 
lead to too optimistic uncertainty measures for the results. This is mainly due to the omission 
of physical correlations between GPS observations which are induced by the turbulent 
dynamics of the atmosphere. Several investigations of the physical correlations of GPS 
observables are known. Three main approaches can be distinguished. 

From a theoretical point of view, Schwieger [11] proposed a forward modelling approach to 
synthetically construct fully populated VCM for GPS phase observations. Following the idea 
of “elementary errors” proposed by [9], Schwieger identified such time dependent error 
sources in the apriori correction models (e.g. like the Saastamoinen [10] model) or in the 
auxiliary information like satellite orbits or clocks. The variance propagation of these 
elementary errors yields the fully populated VCM of the corrected GPS observables. He 
showed that the stochastic model for the tropospheric delay is decisive for the total amount of 
correlation. Since the satellite geometry is continuously changing, temporal as well as spatial 



  
 
 
 
correlations are implicitly modelled. However, the main challenge remains in the verification 
of this theoretical model using actual observations. 

A second approach to determine fully populated VCM – and subsequently the correlations - is 
based on variance-covariance component estimation. Tiberius and Kenselaar [12] used this 
approach to estimate the different covariances between code and phase observables. 
Computing the in-between-receiver single differences of a zero-baseline (10min, 601 epochs) 
they showed that: (i) the correlations between satellites of the same epoch can be neglected, 
(ii) correlations exist between GPS observables of the two frequencies for the analyzed 
Trimble 4000SSi, namely 76% between C1 and P2 and 37% between L1 and L2, while code 
and phase observations are uncorrelated, (iii) L1 phase observations of satellites at high 
elevations are free of temporal correlations, while L2 observations show temporal correlations 
over 10 s to 20 s. However, Tiberius and Kenselaar admitted that these zero-baseline results 
might not give realistic VCM for real (non-zero) baselines. 

Wang et al. (2002) used also variance component estimation. They proposed an iterative 
stochastic assessment procedure to directly estimate the coefficients of temporal correlation of 
DD residuals. This strategy is based on a first order vector auto-regressive model for the DD 
residuals. 

The third main approach attempts to derive empirical correlation functions fitted to the 
autocorrelation function of residual time series. El-Rabbany [4] found a simple exponential 
function with a correlation length of 263 s for L1 DD phase observations. Howind et al. [5] 
analysed DD residual time series (sampling rate of 15 s) of the ionospheric free linear 
combination for baselines from 50 km to 250 km in Antarctica. To describe the temporal 
correlation, they fitted four different functions to the autocorrelations functions obtained from 
800 DD sequences. 

However, special care must be taken to fulfil the mathematical requirements for time series 
analysis such as stationarity, ergodicity, homoscedaticity or normality. Bischoff et al. [2] 
developed statistical tests for the hypothesis of homoscedaticity.  

In general, the resulting correlation functions are given in terms of exponential functions. 
Note that this choice of the correlation function is based on the ease of the mathematical 
operations and not on physical characteristics ([7], p.355). 

 

In this paper, we present an alternative approach to treat the physical correlations of GPS 
signals. It is directly related to the physics of atmospheric dynamics and based on turbulence 
theory. Previously atmospheric turbulence theory was applied in the coordinate domain by 
[3]. He showed that the coordinate standard deviations of short baselines (< 3 km) follow the 
power law behaviour of 5/3 predicted from turbulence theory. Here, we will analyse 
observed-minus-computed (O-C) time series in the observation domain.  

In the next section, some basic notions from turbulence theory are introduced. Then the 
design and the analysis of the dedicated GPS test experiment are described. First results of the 
application of turbulence theory for modelling physical correlation of GPS signals are 
presented.  

2. Notions from turbulence theory 
Random processes with stationary increments. In practice, random processes are often 
approximated with sufficient accuracy by stationary random functions. However, due to 



  
 
 
 
fluctuations these assumptions do not hold for atmospheric parameters such as temperature or 
refractivity. Consequently, the corresponding processes are not strictly stationary, their mean 
values are only constant over relatively short time periods, and the integrals describing the 
covariance function do not converge.  

These difficulties can be overcome if these processes have stationary increments, cf. [14]. A 
stochastic process is said to have stationary increments if  

( ) ( )x t t x t+ ∆ −  and ( ) ( )( )2
x t t x t+ ∆ −  

are independent of t, where the ensemble average is denoted by . Therefore, the basic idea 
is to work with a random process 

( ) ( ) ( )y t x t t x t= + ∆ −  

instead of ( )x t . The difference process ( )y t  is often stationary even if ( )x t  may not be 
stationary. 

Structure functions. Processes with stationary increments are adequately characterised in 
terms of structure functions. Basically the structure function is defined for measurements x at 
two adjacent receivers located at the positions r1 and r2 and separated by the vector ρ ([7], p. 
358). The spatial structure function ( )xD ρ  is defined as 

( ) ( ) ( )( )2
1 2xD x x= −ρ r r . (1) 

It depends only on the separation ρ. For stationary random processes, the structure and the 
covariance function ( )B | |ρ  are related by 

( ) ( ) ( )( )2 0xD | | B | | B= −ρ ρ . (2) 

In a similar way, the temporal structure function ( )xD t∆  is defined as 

( ) ( ) ( )( ) ( )( )2 2
xD t x t t x t y t∆ = + ∆ − = . (3) 

It depends only on the temporal separation t∆ . 

Power-law processes. Many geophysical and atmospheric processes can be best described by 
so-called power-law processes, cf. [1] for an overview. For power-law processes, the spectral 
density ( )S f  is given by 

( )S f c f ν= , (4) 

where f denotes the temporal or spatial frequency, and ν  the spectral index. The spectral 
index characterises the stochastic process, e.g. random walk processes have the index 2ν = − . 
For spectral indices ν < -1 the correspondent stochastic process is non-stationary. 
Consequently, the integral equation for the spectral density does not converge. This problem 
can be solved by restricting the frequency domain and eliminating mainly the low frequencies 
parts. 

From turbulence theory we know that atmospheric fluctuations of the refractivity can be 
described as power law processes with an index ν = -11/3, hence as a non-stationary process. 



  
 
 
 
The corresponding structure functions for GPS phase observations shows also a power law 
behaviour with exponents 5/3 for three-dimensional turbulent processes and 2/3 for two-
dimensional processes, respectively, cf. [7]. 

3. Experiment 

3.1. Set-up and Equipment 

In order to study the impact of atmospheric turbulence on GPS signals, a specific test network 
was designed and measured by the Institute of Engineering geodesy and measurement system 
(EGMS). 

 

Figure 1: Test network “Seewinkel” (map by Bundesamt für Eich und Vermessungswesen) 

 

Figure 1 shows the network design consisting of 6 points which are exactly aligned. Special 
care has been taken to guarantee no satellite obstructions as well as identical station heights. 
In addition, identical equipment was used (Leica SR530 and SR520 receiver as well as 
ASHTECH choke-ring antennas with SCIS-radoms) at all stations.  

A 8-h session was observed using a sampling rate of 1 Hz and a cut off angle of 3°. In 
general, more than 7 satellites were tracked simultaneously. Table 1 gives an overview of the 
baseline lengths, height differences and azimuths.  

 

baseline length [km] height difference [m] 
P0-P1     0.95     0.21 
P0-P2     2.04     0.19 
P0-P4     4.29     1.52 
P0-P8     8.00     1.70 

P0-P16    16.15   -10.68 

Table 1: Baseline lengths and height differences in the Seewinkel GPS network 



  
 
 
 
3.2. Analysis 

The analysis was carried out with the Bernese GPS software (vers. 5.0), cf. [6]. In a first step, 
the ITRF coordinates of the stations were determined with respect to the ITRF station GRAZ 
using 30 s data. In a second step, undifferenced L1 observed-minus-computed (O-C) time 
series were computed with a data rate of 1 s for the detailed analysis. For all computations, 
precise IGS orbits and the global CODE ionospheric model as well as precise CODE 30s 
satellite clocks were used. Finally, double-differences (DD) can easily be computed. 

Figure 2 shows the obtained O-C DD time series using PRN6 as reference satellite for a 2h-
session (5:45-7:45 GPS time, 15. April 2003) for a short baseline (P0-P1: 0.95 km) and a long 
baseline (P0-P16: 16.15 km). In order to improve the readability, each DD time series is 
shifted by a constant offset of 5 cm. Figure 3 shows the skyplot of the satellite distribution for 
the 2-h observation window. 

 

Figure 2: Time series of  DD. Left: baseline P0-P1, right: baseline P0-P16 

 

 

Figure 3: Skyplot of satellites during the time window (5:45-7:45) 



  
 
 
 
In general, different error sources and remaining effects (after application of a priori 
correction models) contribute to the signatures of undifferenced GPS phase observables, such 
as satellite and receiver clock errors, and remaining tropospheric or ionospheric effects. 
Double-differencing only eliminates the common parts of the remaining effects. The residual 
effects in DD are reflected by trends and random variations in the time series. Their amounts 
increase with baseline length, compare the subfigures 2a and 2b. Since on April 15 2003 
heavy ionospheric perturbation occurred ([8]), the variations (cf. Figure 2b) are mainly due to 
those ionospheric effects that are not modelled in the global CODE a priori correction model. 
These unmodelled perturbation effects can be seen from an analysis of the geometry-free 
linear combination – especially for PRN5, PRN10, and PRN24. 

3.3. Temporal structure functions of DD 

The temporal as well as spatial structure functions are most conveniently shown in log-log-
plots, where they are straight lines with slopes equal the exponent. In section 2 the predicted 
exponents (5/3 and 2/3) for tropospheric turbulent effects are given. In general however, 
different processes and error sources may be superimposed on the pure tropospheric effects in 
the GPS data, such as residual instrumental delays or ionospheric fluctuations. Consequently, 
the structure functions show several principal sections with different power law behaviours 
depending on the dominant effect. Figure 4 gives a typical pattern of the temporal structure 
function. The theoretical shape is given in red, while the pattern often encountered by actual 
temporal structure functions is depicted in black. 

 

Figure 4: General behaviour of temporal structure function.  

 

(A) For very short time differences (some seconds) the curve in the log-log-plot is flat and the 
corresponding power law exponent is close to 0, indicating that a white noise process is 
dominant.  

(B) For medium time differences turbulence predominates, i.e. the steepness of the structure 
function in the log-log-plot increases reaching typical values of 2/3 and 5/3. 

(C) For large time differences the structure function becomes flat again with a mean power 
law exponent of 0. Hence, again the white noise process dominates and the data are 
uncorrelated. This section is called saturation. In addition, in this section, if existent, the long 
periodic variations of the original time series are directly reflected in the structure function. 

Using precise standard products like IGS orbits, the CODE global ionospheric model, the 
CODE 30sec satellite clocks, and standard apriori correction models, the temporal structure 



  
 
 
 
functions computed from the Seewinkel network are plotted in Figure 5. In Figure 5 these 
three principal sections of the structure function can be identified. 

  

Figure 5: Temporal structure functions. Left: baseline P0-P1, right: baseline P0-P16 

 

(A) For time lags up to 20 s the structure function is flat indicating a dominant white noise 
process. This process can be caused by residual instrumental effects. Using autocorrelation 
functions this behaviour would be reflected by a large drop of the autocorrelation in the first 
epoch. 

(B) For larger time lags (20 s – 200 s) the steepness of the slope increases reaching maximum 
values between 0.2 (PRN25 and PRN30) and 1.2 (PRN15) for the short baseline. For the long 
baseline the power law exponent reached maximum values of 0.8 (PRN25 and PRN30) and 
1.7 (PRN5 and PRN10). These values cover the predicted range and are close to 2/3 or 5/3. 
Since for short baselines the remaining perturbing and turbulent effects are very similar at 
both endpoints, DD eliminates most of these effects which is reflected in smaller exponents. 
For the baseline P0-P16, in addition to tropospheric effects, ionospheric fluctuations with 
large temporal scales remain. From the analysis of the geometry-free linear combination, we 
have seen that these fluctuations show long periods of e.g., 18 min for PRN10.  

(C) Finally saturation can be obtained for time lags larger than ca. 200 s or 400 s for the short 
baseline. This critical time lag, for which the DD are uncorrelated depends on the amount of 
turbulent perturbations seen by the satellites. Since for the long baselines these amounts are 
larger, the saturation is reached later, at time lags larger than 400 s. 

4. Conclusions 

Using a specially design test network, we showed first results of the analysis of physical 
correlations treated by turbulence theory.  

Structure functions have been introduced to deal in an adequate way with time series with 
stationary increments such as GPS DD reflecting atmospheric turbulence. 

We have seen that GPS DD are composed of different stochastic processes with different 
power laws, such as white noise or turbulent atmospheric fluctuations.  

Finally, the decorrelation time for the GPS DD depends on the amount of atmospheric 
fluctuations encountered along the satellites signal paths through the turbulent atmosphere. 
This amount is a function of the atmospheric conditions, the satellite elevations and baseline 



  
 
 
 
length. Here we found decorrelation times of ca. 200 s for the 1 km baseline and larger than 
400 s for the 16 km baseline. 
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