Laufende Forschungsprojekte

  • Atmosphäre-Ozean Hintergrundmodellierung für terrestrische Gravimetrie (SFB 1464, C06)
    Wir werden uns auf die Entwicklung von global anwendbarer Hintergrundmodelle der Atmosphären- und Ozeandynamik für weltweit verteilte terrestrische Schweremessungen konzentrieren. Die Hintergrundmodelle werden aufgeteilt in Deformationseffekte, welche auch die lateral heterogene Rheologie der Erdkruste berücksichtigen, regionale bis globale Anziehungseffekte der atmosphärischen und ozeanischen Massen und lokale Effekte atmosphärischer Massen aus der unmittelbaren Umgebung des Sensors, die am stärksten von der lokalen topographischen Rauigkeit abhängen und die potenziell am meisten von einer möglichen Kombination mit barometrischen Beobachtungen rund um das Gravimeter profitieren könnten.
    Leitung: Dr. Henryk Dobslaw, Dr.-Ing. Ludger Timmen
    Team: Dr. Kyriakos Balidakis
    Jahr: 2021
    Förderung: DFG
  • Grundwassergravimetrie und QG-1 (SFB 1464, C01)
    Für das Grundwassermanagement in Mitteleuropa bietet die bodengebundene Gravimetrie ein einzigartiges Potenzial zur lokalen Überwachung zeitlicher Schwankungen des Wassergehalts im Untergrund. Das Quantengravimeter (QG-1) der LUH, welches mit Hilfe von frei-fallenden Atomen die Schwerebeschleunigung bestimmt, befindet sich in der letzten Phase der Entwicklung (A01) und soll noch 2021 für geodätische und gravimetrische Anwendungen bereit sein. Die Fähigkeiten des Absolutgravimeters QG-1 werden sowohl mit Messungen in Gebäuden, als auch bei Messkampagnen im Gelände eingesetzt und getestet. Schwerefeldvariationen durch Grundwasserveränderungen sollen mit einem Fehler von 10 nm/s² bestimmt werden.
    Leitung: Dr.-Ing. Heiner Denker, Dr.-Ing. Ludger Timmen
    Team: Dinesh Chebolu
    Jahr: 2021
    Förderung: DFG
  • Optische Uhren für chronometrisches Nivellement (SFB 1464, A04)
    Wir werden das Potenzial des chronometrischen Nivellements demonstrieren, indem wir gemeinsam mit Teilprojekt A05 Höhenmessungen mit der gleichen oder sogar besseren Auflösung demonstrieren, als sie das geometrische Nivellement oder der Global Navigation Satellite System (GNSS)/Geoid-Ansatz derzeit erreichen können. Darüber hinaus wird die Methodik in Zusammenarbeit mit TerraQ-Teilprojekten eingesetzt, die gravimetrische und GNSS-Techniken nutzen, um z.B. Wasserspeichern zu überwachen. (Projekte: Terrestrische Uhrennetzwerke: Grundlagenphysik und Anwendungen (C02), Modellierung von Massenvariationen bis zu kleinen Skalen (C05), und Atmosphäre-Ozean Hintergrundmodellierung für terrestrische Gravimetrie (C06)).
    Leitung: PD Dr. Christian Lisdat, Prof. Dr. Piet O. Schmidt, Dr.-Ing. Denker
    Team: Tim Lücke, Constantin Nauk
    Jahr: 2021
    Förderung: DFG
  • Quantengravimetrie (SFB 1464, A01)
    Im Rahmen von TerraQ soll die auf der Atomchip-Technologie basierende Quantengravimetrie mit Bose-Einstein-Kondensaten (BECs) etabliert und ihr Potenzial für die mobile Gravimetrie erforscht werden. Mit dem in Laufe des SFB stetig häufigeren Einsatz des Quantengravimeters QG-1 und ansteigender Leistungsfähigkeit sollen im Rahmen von Messreihen der Teilprojekte C01, A05 und C05 die praktische Anwendbarkeit der zugehörigen Methoden nachgewiesen und der Betrieb von QG-1 unter variierenden, rauen Bedingungen demonstriert werden.
    Leitung: Dr. Waldemar Herr, Prof. Dr.-Ing. Jürgen Müller, Prof. Dr. Ernst Rasel
    Team: Nina Heine, Marat Musakaev
    Jahr: 2021
    Förderung: DFG
  • Gravimetrische Gezeiten und Gravitationsströmungen in der Nordsee
    Die Forschungsgruppe untersucht den Gravitations- und Deformationseffekt (Neigungseffekt), der durch zeitliche Variationen der Massenverteilung in der Atmosphäre und im Meer verursacht wird. Dabei ist zwischen den direkten Newtonschen Anziehungskräften und den indirekten Effekten durch die Krustendeformation (variierende Auflasten) zu unterscheiden. Letztere gehen aufgrund der Elastizität der festen Erdkruste mit einer vertikalen Verschiebung und einer Neigung des Meeresbodens sowie der Landoberfläche, insbesondere entlang der Küste oder der Inseln, einher. Eine solche vertikale Bodenverschiebung ist mit einer absoluten Höhenänderung des Gravimeters bezügl. des Geozentrums verbunden. Die kombinierte Beobachtung von Gravitations- und Neigungsänderungen ermöglicht die Trennung von Signalen aufgrund von Anziehung und Lastdeformation.
    Leitung: Dr.-Ing. Ludger Timmen, Dr. Adelheid Weise
    Team: Dr.-Ing. Ludger Timmen, Dr. Adelheid Weise
    Jahr: 2018
    Förderung: IfE, Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers”
    Laufzeit: 2018-2021
  • Gravimetrisches Referenznetzwerk für ein 10m Atominterferometer
    Das Very Long Baseline Atom Interferometer (VLBAI) im Hannover Institute for Technology (HITec) ist ein physikalisches Experiment in dem Versuche zur Interferometrie von Atomen auf einer Fallstrecke von etwa 10m durchgeführt werden können. Diese Versuche dienen in erster Linie der Grundlagenphysik, es können aber auch gravimetrische Messungen durchgeführt werden. Aufgrund der großen Fallstrecke und dadurch lange andauernden Fallzeit wird von einer zukünftigen Genauigkeit im Bereich von 1 nm/s² ausgegangen. Bei klassischen transportablen Absolutgravimetern hingegen werden einige 10er nm/s² erreicht. Das VLBAI könnte somit eine Referenz für klassische Gravimeter darstellen. Für diese Versuche und zur Bewertung des Fehlerhaushaltes ist jedoch die Kenntnis des lokalen Schwerefeldes nötig. Dieses wird parallel zur Installation des Großgerätes und darüber hinaus durch gravimetrische Messungen und Vorwärtsmodellierung bestimmt.
    Leitung: Dr.-Ing. Manuel Schilling, Dr.-Ing. Ludger Timmen
    Team: Dr.-Ing. Manuel Schilling, Dr.-Ing. Ludger Timmen
    Jahr: 2017
    Förderung: IfE, SFB 1128, EXC-2123 "QuantumFrontiers"
    Laufzeit: 2017-2025
    © M. Schilling
  • A mobile absolute gravimeter based on atom interferometry for highly accurate point observations
    Atominterferometer zeigen eine hohe Empfindlichkeit gegenüber inertialen Kräften. Das an der Humboldt-Universität zu Berlin entwickelte Gravimetric Atom Interferometer (GAIN) ist ein mobiles Quantengravimeter, das durch die Interaktion lasergekühlter Rb-87 Atome mit Laserlicht in einer Fontäne die quasi-kontinuierliche Messung absoluter Schwere erlaubt. Im Rahmen der Weiterentwicklung werden Supraleitgravimeter und Laser-Interferometer Absolutgravimeter, die den derzeitigen Stand der Technik darstellen, in Vergleichsmessungen zur Charakterisierung von GAIN genutzt.
    Leitung: Prof. Dr.-Ing. Jürgen Müller
    Team: Dr.-Ing. Manuel Schilling
    Jahr: 2012
    Förderung: DFG
    © IFE / M. Schilling
  • Gravimetrische Messungen auf der Zugspitze und am Wank (Bayerische Alpen)
    Die geodätische Überwachung von Veränderungen aufgrund des Alpenwachstums und dem Rückgang des Permafrostes erfolgt sowohl mit gravimetrischen als auch mit geometrischen Methoden. An der Zusammenarbeit sind neben dem IfE (Absolut- und Relativgravimetrie, Nivellement) auch die Bayerische Akademie der Wissenschaft (GNSS, Nivellement, Relativgrav., Wank), die TU München (Nivellement, Relativgravimetrie) und das GFZ Potsdam (Supraleitgravimetrie und permanente GNSS Station auf der Zugspitze) beteiligt.
    Leitung: Dr.-Ing. Ludger Timmen
    Jahr: 2004
    Förderung: IFE, Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers”, GFZ Potsdam, TU München, Bayerische Akademie der Wissenschaften
    Laufzeit: 2004-2020