3D Uncertain Implicit Surface Mapping Using GMM and GP
- verfasst von
- Qianqian Zou, Monika Sester
- Abstract
In this letter, we address the challenge of constructing continuous 3D models that accurately represent uncertain surfaces, derived from noisy LiDAR data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainties alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other state-of-the-art methods, the proposed method achieves lower RMSEs, higher log-likelihood and lower computational costs for the evaluated data.
- Organisationseinheit(en)
-
Institut für Kartographie und Geoinformatik
- Typ
- Artikel
- Journal
- IEEE Robotics and Automation Letters
- Band
- 9
- Seiten
- 10559-10566
- Anzahl der Seiten
- 8
- ISSN
- 2377-3766
- Publikationsdatum
- 11.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Steuerungs- und Systemtechnik, Biomedizintechnik, Mensch-Maschine-Interaktion, Maschinenbau, Maschinelles Sehen und Mustererkennung, Angewandte Informatik, Steuerung und Optimierung, Artificial intelligence
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2403.07223 (Zugang:
Offen)
https://doi.org/10.1109/LRA.2024.3475873 (Zugang: Geschlossen)