Modeling approaches for precise relativistic orbits: Analytical, Lie-series, and pN approximation

verfasst von
Dennis Philipp, Florian Wöske, Liliane Biskupek, Eva Hackmann, Enrico Mai, Meike List, Claus Lämmerzahl, Benny Rievers
Abstract

Accurate orbit modeling plays a key role in contemporary and future space missions such as GRACE and its successor GRACE-FO, GNSS, and altimetry missions. To fully exploit the technological capabilities and correctly interpret measurements, relativistic orbital effects need to be taken into account. Within the theory of General Relativity, equations of motion for freely falling test objects, such as satellites orbiting the Earth, are given by the geodesic equation. We analyze and compare different solution methods in a spherically symmetric background, i.e. for the Schwarzschild spacetime, as a test bed. We investigate satellite orbits and use direct numerical orbit integration as well as the semi-analytical Lie-series approach. The results are compared to the exact analytical reference solution in terms of elliptic functions. For a set of exemplary orbits, we determine the respective accuracy of the different methods. Within the post-Newtonian approximation of General Relativity, modified orbital equations are obtained by adding relativistic corrections to the Newtonian equations of motion. We analyze the accuracy of this approximation with respect to the general relativistic setting. Therefore, we solve the post-Newtonian equation of motion using the eXtended High Performance Satellite dynamics Simulator. For corresponding initial conditions, we compare orbits in the Schwarzschild spacetime to those in its post-Newtonian approximation. Moreover, we compare the magnitude of relativistic contributions to several typical perturbations of satellite orbits due to, e.g., solar radiation pressure, Earth's albedo, and atmospheric drag. This comparison is done for our test scenarios and for a real GRACE orbit to highlight the importance of relativistic effects in geodetic space missions. For the considered orbits, first-order relativistic contributions give accelerations of about 20 nm/s

2 and are dominant in the radial direction.

Organisationseinheit(en)
Institut für Erdmessung
Externe Organisation(en)
Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation (ZARM)
Universität Bremen
Typ
Artikel
Journal
Advances in Space Research
Band
62
Seiten
921-934
Anzahl der Seiten
14
ISSN
0273-1177
Publikationsdatum
15.08.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Luft- und Raumfahrttechnik, Astronomie und Astrophysik, Geophysik, Atmosphärenwissenschaften, Astronomie und Planetologie, Erdkunde und Planetologie (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1708.04609 (Zugang: Offen)
https://doi.org/10.1016/j.asr.2018.05.020 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“