ForschungPublikationen
Detail-Ansicht

Common-clock GPS single differences

An improved correlation model for GPS phase observations based on turbulence theory

verfasst von
Gaël Kermarrec, Steffen Schön
Abstract

Microwave signals, for example, those from Global Navigation Satellite System (GNSS) and Very Long Baseline Interferometry (VLBI), are affected by tropospheric turbulence in such a way that the random fluctuations of the atmospheric index of refractivity correlate the phase measurements. A proper modeling of correlations is mandatory to avoid biased analysis, particularly when statistical tests are used. In this contribution, we analyze single differences (SD) computed from Global Positioning System (GPS) phase observations for which the between receiver clock error could be strongly mitigated by a specific common clock setting. We estimate specific parameters from the power spectral density (psd), which is directly related to the correlation function, with the debiased Whittle maximum likelihood and investigate their dependencies with the satellite geometry (elevation, azimuth angles) and the time of the day. We show that (i) the estimated slopes of the psd follow the one predicted by the Kolmogorov turbulence theory and (ii) the cut-off at high frequencies shows daily variations that may be linked with the strength of the turbulence. Based on these findings, we derive an improved spectral density model for GPS phase SD. The results of this study contribute to improving the stochastic description of random effects impacting VLBI and GNSS phase observations by studying variations of parameters from the von Karman spectrum.

Organisationseinheit(en)
Institut für Meteorologie und Klimatologie
Institut für Erdmessung
SFB 1464: Relativistische und quanten-basierte Geodäsie (TerraQ)
Typ
Artikel
Journal
Advances in space research
Band
72
Seiten
1081-1093
Anzahl der Seiten
13
ISSN
0273-1177
Publikationsdatum
15.08.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Luft- und Raumfahrttechnik, Astronomie und Astrophysik, Geophysik, Atmosphärenwissenschaften, Astronomie und Planetologie, Erdkunde und Planetologie (insg.)
Fachgebiet (basierend auf ÖFOS 2012)
Astronomie, Wahrscheinlichkeitstheorie
Ziele für nachhaltige Entwicklung
SDG 9 – Industrie, Innovation und Infrastruktur
Elektronische Version(en)
https://doi.org/10.1016/j.asr.2023.05.042 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“