ForschungPublikationen
Detail-Ansicht

Low-latency GNSS multipath simulation and building wall detection in urban environments

verfasst von
Marcus O’Connor, Tobias Kersten, Christian Skupin, Fabian Ruwisch, Le Ren, Temmo Wübbena, Steffen Schön
Abstract

Precise navigation for fully autonomous driving—especially in dense urban areas—requires periodic precise position estimates. Global Navigation Satellite System (GNSS) technology has the potential to provide absolute positioning accuracy at a centimeter level. However, buildings in urban environments cause signal distortions and signal reflections—the so-called multipath—which are the most challenging parts in the GNSS error budget. Hence, we developed a scalable real-time multipath simulator for mitigating potential multipath receptions. The simulator uses three-dimensional (3D) building information, satellite, and user positions. The key drivers of latency are the calculation of reflection, diffraction, and line-of-sight, as well as the response time of the 3D building model database. The memory manager of the graphic processing units (GPUs) in combination with a dedicated load balancer enables fast and efficient multipath analysis. Selected case studies demonstrate the simulator’s potential to significantly improve the position accuracy of the processing engine. The use of the multipath simulator reduces the error in 61multipath processing. The scalability of the simulator is demonstrated by combining the multipath simulator with a traffic simulator. Furthermore, we present a novel methodology for the detection of walls using GNSS signals to better account for incomplete or erroneous 3D building information in GNSS signal processing.

Organisationseinheit(en)
Institut für Erdmessung
Leibniz Forschungszentrum FZ:GEO
Externe Organisation(en)
Geo++ GmbH
Robert Bosch GmbH
Typ
Artikel
Journal
Simulation
Band
100
Seiten
71-89
Anzahl der Seiten
19
ISSN
0037-5497
Publikationsdatum
01.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Modellierung und Simulation, Computergrafik und computergestütztes Design
Elektronische Version(en)
https://doi.org/10.1177/00375497221145601 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“