Laufende Forschungsprojekte

Terrestrische Gravimetrie

  • Gravimetrische Gezeiten und Gravitationsströmungen in der Nordsee
    Die Forschungsgruppe untersucht den Gravitations- und Deformationseffekt (Neigungseffekt), der durch zeitliche Variationen der Massenverteilung in der Atmosphäre und im Meer verursacht wird. Dabei ist zwischen den direkten Newtonschen Anziehungskräften und den indirekten Effekten durch die Krustendeformation (variierende Auflasten) zu unterscheiden. Letztere gehen aufgrund der Elastizität der festen Erdkruste mit einer vertikalen Verschiebung und einer Neigung des Meeresbodens sowie der Landoberfläche, insbesondere entlang der Küste oder der Inseln, einher. Eine solche vertikale Bodenverschiebung ist mit einer absoluten Höhenänderung des Gravimeters bezügl. des Geozentrums verbunden. Die kombinierte Beobachtung von Gravitations- und Neigungsänderungen ermöglicht die Trennung von Signalen aufgrund von Anziehung und Lastdeformation.
    Leitung: Dr.-Ing. Ludger Timmen, Dr. Adelheid Weise
    Team: Dr.-Ing. Ludger Timmen, Dr. Adelheid Weise
    Jahr: 2018
    Förderung: IfE, Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers”
    Laufzeit: 2018-2021
  • Gravimetrisches Referenznetzwerk für ein 10m Atominterferometer
    Das Very Long Baseline Atom Interferometer (VLBAI) im Hannover Institute for Technology (HITec) ist ein physikalisches Experiment in dem Versuche zur Interferometrie von Atomen auf einer Fallstrecke von etwa 10m durchgeführt werden können. Diese Versuche dienen in erster Linie der Grundlagenphysik, es können aber auch gravimetrische Messungen durchgeführt werden. Aufgrund der großen Fallstrecke und dadurch lange andauernden Fallzeit wird von einer zukünftigen Genauigkeit im Bereich von 1 nm/s² ausgegangen. Bei klassischen transportablen Absolutgravimetern hingegen werden einige 10er nm/s² erreicht. Das VLBAI könnte somit eine Referenz für klassische Gravimeter darstellen. Für diese Versuche und zur Bewertung des Fehlerhaushaltes ist jedoch die Kenntnis des lokalen Schwerefeldes nötig. Dieses wird parallel zur Installation des Großgerätes und darüber hinaus durch gravimetrische Messungen und Vorwärtsmodellierung bestimmt.
    Leitung: Dr.-Ing. Manuel Schilling, Dr.-Ing. Ludger Timmen
    Team: Dr.-Ing. Manuel Schilling, Dr.-Ing. Ludger Timmen
    Jahr: 2017
    Förderung: IfE, SFB-1128, EXC-2123 "QuantumFrontiers"
    Laufzeit: 2017-2025
    © M. Schilling
  • A mobile absolute gravimeter based on atom interferometry for highly accurate point observations
    Atominterferometer zeigen eine hohe Empfindlichkeit gegenüber inertialen Kräften. Das an der Humboldt-Universität zu Berlin entwickelte Gravimetric Atom Interferometer (GAIN) ist ein mobiles Quantengravimeter, das durch die Interaktion lasergekühlter Rb-87 Atome mit Laserlicht in einer Fontäne die quasi-kontinuierliche Messung absoluter Schwere erlaubt. Im Rahmen der Weiterentwicklung werden Supraleitgravimeter und Laser-Interferometer Absolutgravimeter, die den derzeitigen Stand der Technik darstellen, in Vergleichsmessungen zur Charakterisierung von GAIN genutzt.
    Leitung: Prof. Dr.-Ing. Jürgen Müller
    Team: M. Sc. Manuel Schilling
    Jahr: 2012
    Förderung: DFG
    © IFE / M. Schilling
  • Gravimetrische Messungen auf der Zugspitze und am Wank (Bayerische Alpen)
    Die geodätische Überwachung von Veränderungen aufgrund des Alpenwachstums und dem Rückgang des Permafrostes erfolgt sowohl mit gravimetrischen als auch mit geometrischen Methoden. An der Zusammenarbeit sind neben dem IfE (Absolut- und Relativgravimetrie, Nivellement) auch die Bayerische Akademie der Wissenschaft (GNSS, Nivellement, Relativgrav., Wank), die TU München (Nivellement, Relativgravimetrie) und das GFZ Potsdam (Supraleitgravimetrie und permanente GNSS Station auf der Zugspitze) beteiligt.
    Leitung: Dr.-Ing. Ludger Timmen
    Jahr: 2004
    Förderung: IFE, Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers”, GFZ Potsdam, TU München, Bayerische Akademie der Wissenschaften
    Laufzeit: 2004-2020

Schwerefeld- und Geoidmodellierung

  • COST-G: International Combination Service for Time-variable Gravity Field Solutions
    COST-G ist ein zukünftiges Produktzentrum des IGFS (International Gravity Field Service), welches das Ziel hat kombinierte monatliche Schwerefelder bereitzustellen. Hierbei werden die von den einzelnen Analysezentren berechneten Normalgleichungsmatrizen der Schwerefeldparameter aufbauend auf eigens für den Service definierten Qualitätsmerkmalen empirisch gewichtet, gelöst und validiert.
    Leitung: Prof. Jakob Flury
    Team: M.Sc. Igor Koch
    Jahr: 2019
  • Europäische Geoidberechnungen
    Leitung: Dr.-Ing. Heiner Denker
    Team: Dr.-Ing. Heiner Denker
    Jahr: 2019
    Förderung: verschiedene Landes- und Drittmittel; Unterstützung durch Internationale Assoziation für Geodäsie (IAG)
    Laufzeit: seit 1990
  • QuantumFrontiers (EXC2123) / Research Unit Relativistic Geodesy
    Leitung: Prof. Dr. Karsten Danzmann (AEI), Prof. Dr. Claus Lämmerzahl (ZARM)
    Team: Dr.-Ing. Heiner Denker u. a.
    Jahr: 2019
    Förderung: Deutsche Forschungsgemeinschaft (DFG)
  • Gravity field recovery from satellite-to-satellite tracking data
    Das Institut für Erdmessung berechnet und publiziert globale monatliche Schwerefelder aus Sensordaten der Multisatellitenmission GRACE. Zentrale Aspekte der Schwerefeldbestimmung und Forschungsgegenstand dieses Projektes sind die Sensorfusion, die Modellierung von konservativen und nicht-konservativen Störkräften, die numerische Integration der Satellitenbewegung, die Anpassung von modellierten Satellitenbahnen an Beobachtungen durch iterative Schätzverfahren, sowie die Parametrisierung der Satellitenbewegung.
    Leitung: Prof. Jakob Flury
    Team: M.Sc. Igor Koch
    Jahr: 2018
    © IfE / I. Koch
  • High-resolution modeling of geoid-quasigeoid separation
    Leitung: Prof. Dr.-Ing. Jakob Flury
    Jahr: 2013

Relativistische Geodäsie

  • High-performance clock networks and their application in geodesy
    The rapid development of optical clocks and frequency transfer techniques provides the opportunity to compare clocks’ frequencies at the uncertainty level of 10-18. This will enable relativistic geodesy with the aimed accuracy of cm in terms of height. Clock networks are thus highly relevant to various geodetic applications, such as the realization of a height reference system and the determination of regional/global gravity fields. In this project, we aim to investigate the potential of high-performance clock networks and quantify their contributions to specific applications through dedicated simulations.
    Leitung: Prof. Dr.-Ing. Jürgen Müller
    Team: Dr.-Ing. Hu Wu
    Jahr: 2019
    Förderung: Germany’s Excellence Strategy – EXC-2123 “QuantumFrontiers” (DFG)
  • Chronometrisches Nivellement
    Leitung: Dr.-Ing. Heiner Denker
    Team: Dr.-Ing. Heiner Denker und weitere Mitarbeiter
    Jahr: 2019
    Förderung: verschiedene Landes- und Drittmittel sowie separate Projekte
    Laufzeit: seit 2010
  • LLR Relativity Test
    Leitung: Prof. Dr.-Ing. habil. Jürgen Müller
    Team: Dr.-Ing. Liliane Biskupek
    Jahr: 2019
    Förderung: DFG
  • Relativistische Geodäsie in Netzen optischer Atomuhren
    Leitung: Prof. Dr.-Ing. Jakob Flury
    Jahr: 2018
    Laufzeit: seit 2018

Satellitengravimetrie

  • 3D Earth – A Dynamic Living Planet
    The goal of 3D-Earth is to establish a global 3D reference model of the crust and upper mantle based on the analysis of satellite gravity e.g. GOCE and (electro-)magnetic missions e.g. Swarm in combination with seismological models and analyse the feedback between processes in Earth’s deep mantle and the lithosphere. Selected case examples will provide the possibility to test these approaches on a global and regional scale. This will result in a framework for consistent models that will be used to link the crust and upper mantle to the dynamic mantle.
    Leitung: Prof. Dr.-Ing. Jakob Flury
    Team: Dr.-Ing. Akbar Shabanloui
    Jahr: 2017
    Förderung: ESA
    Laufzeit: 2017-2019
  • Earth System Mass Transport Mission (e.motion)
    Leitung: Jakob Flury
    Jahr: 2013

Antennenkalibrierung

  • GPS Codephasen-Variationen für GNSS-Empfangsantennen
    Neben der sehr gut bekannten Existenz von Abweichungen des Empfangszentrums von GNSS-Antennen für Trägerphasen sind gleiche Effekte auch auf der Codephase (Code Phase Variations CPV) gefunden worden. Diese Abweichungen sind stark von der Beschaffenheit und Qualität der Empfangsantennen abhängig und nehmen gerade bei Massenmarktprodukten erhebliche Abweichungen an. Der Nachweis über die Charaktersitik der Codephasen-Variationen ist besonders für Navigationsanwendungen wichtig, da zum einen die Antennen notwendigen Spezifikationen entsprechen müssen und zum anderen die Präzision des Sensors durch Berücksichtigung dieser individuellen Kalibrierwerte deutlich verberssert werden können.
    Leitung: Dr.-Ing. Tobias Kersten
    Team: Yannick Breva, Johannes Kröger
    Jahr: 2018
  • Trägerphasenvariationen (PCC) für neue GNSS-Signale
    Trägerphasenvaritionen sind überaus notwendig für die präzise GNSS-Navigation und Positionierung. Derzeit werden nur GPS L1/L2 und GLONASS L1/L2 im Rahmen der operationellen roboterbasierten Kalibierung zur Verfügung gestellt. Die Weiterentwicklung der individuellen Satellitensysteme (GPS, GLONASS) und die Entwicklung von neuen Systemen (Galileo, Beidou) erfordern die Weiterentwicklung des Kalibrierverfahrens zur Bestimmung entsprechender Parameter neuer Systeme und Frequenzen. Ziel des Projektes ist die Bereitstellung und konsistente Verarbeitung von Kalibrierwerten für GPS L5 und Galileo E1/E5 Signalen auf Basis von Kugelfunktionsentwicklungen. Erhobene Phasenpattern werden mit Kalibrierwerten anderer Institutionen vergleichen und koordiniert ausgetauscht.
    Leitung: Dr.-Ing. Tobias Kersten
    Team: Johannes Kröger, Yannick Breva
    Jahr: 2018

GNSS und Inertialnavigation

  • Korrektur von GNSS-Mehrwegeeffekten für die zuverlässige Eigenlokalisierung von hochautomatisierten Fahrzeugen in innerstädtischen Bereichen (KOMET)
    Die im Fahrzeugbereich verwendete Code-Range (Codemessung) liefert aufgrund ihres hohen Messrauschens nicht die notwendige Auflösung der Ortung. Aufgrund der komplexen GNSS-Signalausbreitung (Signalabschattung, Mehrwegeeffekte) in urbanen Umgebungen ist die Bestimmung einer genauen und robusten Positionslösung eine besondere Herausforderung - z.B. bei der Ortung in engen Straßenschluchten. Das geplante Forschungsvorhaben fokussiert sich daher auf die Entwicklung und Anwendung innovativer Korrekturverfahren zur Reduktion auftretender Mehrwegeeffekte, um die trägerphasenbasierte GNSS-Ortung zu verbessern.
    Leitung: Prof. Dr.-Ing. Steffen Schön, Dr.-Ing. Tobias Kersten
    Team: Dr.-Ing. Tobias Kersten, M.Sc. Fabian Ruwisch
    Jahr: 2020
    Förderung: BMWi / TÜV Rheinland Consulting GmbH
    © Ch. Skupin (Bosch)
  • Bounding and propagating observation uncertainty with interval mathematic (GRK 2159)
    Intervals (Jaulin et al 2001) can be seen as a natural way to bound observation uncertainty in navigation systems such as GPS, IMU or optical sensors like LIDAR, since they are in principle free of any assumption about probability distributions and can thus describe adequately remaining systematic effects (Schön 2016, Schön and Kutterer 2006). In this project, we intent to experimentally investigate in more details the actual size of observation intervals.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Jingyao Su, M.Sc.
    Jahr: 2020
    Förderung: DFG
  • Collaborative Navigation for Smart Cities (GRK 2159)
    Global Navigation Satellite Systems (GNSS) is the only navigation sensor that provides absolute positioning. However, urban areas form the most challenging environment for GNSS to achieve a reliable position. Because of the reduced satellite visibility and disturbed signal propagation like diffraction and multipath, the resulting position has a reduced accuracy and availability. The overall research objective of this project is to reduce these shortcomings through collaboration. Therefore, similarity of multipath at different locations within streets will be studied.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Lucy Icking, M.Sc.
    Jahr: 2019
    Förderung: DFG
  • Entwicklung und Test einer für Quantensensoren adäquaten Berechnungsstrategie für die Inertialnavigation
    Durch neue Messprinzipien haben Quantensensoren signifikante Verbesserungen in Stabilität und Genauigkeit bei der Erfassung von inertialen Einflüssen erzielt. Anstelle mechanischer Federsysteme in Beschleunigungsmessern oder durch einen Faserkreisel oder Ringresonator umschlossene Flächen in Lasergyroskopen sind in Quantensensoren die Skalenfaktoren an atomare Übergänge gebunden und auf Frequenzmessungen zurückzuführen. Die alternativen Messverfahren und hohen Sensitivitäten der Quantensensoren erfordern eine adäquate Auswertestrategie, die sich von der klassischen Herangehensweise der Inertialnavigation unterscheidet. Ziel der Studie ist die Entwicklung und der Test einer entsprechenden Berechnungsstrategie, die gezielt die Anwendbarkeit der einzelnen Berechnungsschritte bei der Quanteninertialnavigation überprüft, und geeignete Alternativen, beispielsweise bei der Integrationsdynamik oder geschätzten Systemparametern, vorschlägt.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Benjamin Tennstedt
    Jahr: 2018
    Förderung: DLR
  • VeNaDU 2: Verbesserte Positionierung und Navigation durch Uhrmodellierung
    Dieses Folgeprojekt zum Vorhaben VeNaDU untersucht zum einen den Performance-Gewinn durch den Einsatz hochstabiler Atomuhren in kinematischem PPP. Zum anderen soll eine Hardware-technische Umsetzung einer miniaturisierten Atomuhr in einem Einfrequenz-Empfänger realisiert werden.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Dr.-Ing. Thomas Krawinkel, Dr. Ankit Jain
    Jahr: 2017
  • Alternative Integritätsmaße mittels Intervallmathematik (GRK 2159, Thema 1)
    Dieses Dissertationsvorhaben beschäftigt sich mit der Entwicklung von alternativen Integritäts­maßen auf Basis der Intervallmathematik, Fuzzy-Theorie und unscharfer Zufallsvariablen.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Hani Dbouk
    Jahr: 2016
    Förderung: DFG
  • Optimale kollaborative Positionierung (GRK 2159, Thema 4)
    Kollaboratives Positionierung (CP) ist eine vielversprechende Technik, die auf einer Gruppe von dynamischen Knoten (Fußgänger, Fahrzeuge usw.) basiert. Diese sind mit verschiedenen (zeitsynchronisierten) Sensoren ausgestattet. Die Qualität der Positionierungs-, Navigations- und Zeitbestimmungsinformationen (PNT) kann dabei durch die Durchführung von Messungen zwischen Knotenpunkten oder Elementen der Umgebung (Stadtmöbel, Gebäude usw.) erhöht werden.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Nicolas Garcia Fernandez
    Jahr: 2016
    Förderung: DFG
  • Improved GPS data analysis for the Swarm constellation
    New concepts for GPS observation data quality assessment and positioning should be developed and evaluated taking advantage of variable geometries in the Swarm constellation.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Dipl.-Ing. Le Ren
    Jahr: 2015
    Förderung: DFG

Lunar Laser Ranging (LLR)

  • LLR Relativity Test
    Leitung: Prof. Dr.-Ing. habil. Jürgen Müller
    Team: Dr.-Ing. Liliane Biskupek
    Jahr: 2019
    Förderung: DFG

SFB 1128 (geo-Q)

  • Gravimetrisches Referenznetzwerk für ein 10m Atominterferometer
    Das Very Long Baseline Atom Interferometer (VLBAI) im Hannover Institute for Technology (HITec) ist ein physikalisches Experiment in dem Versuche zur Interferometrie von Atomen auf einer Fallstrecke von etwa 10m durchgeführt werden können. Diese Versuche dienen in erster Linie der Grundlagenphysik, es können aber auch gravimetrische Messungen durchgeführt werden. Aufgrund der großen Fallstrecke und dadurch lange andauernden Fallzeit wird von einer zukünftigen Genauigkeit im Bereich von 1 nm/s² ausgegangen. Bei klassischen transportablen Absolutgravimetern hingegen werden einige 10er nm/s² erreicht. Das VLBAI könnte somit eine Referenz für klassische Gravimeter darstellen. Für diese Versuche und zur Bewertung des Fehlerhaushaltes ist jedoch die Kenntnis des lokalen Schwerefeldes nötig. Dieses wird parallel zur Installation des Großgerätes und darüber hinaus durch gravimetrische Messungen und Vorwärtsmodellierung bestimmt.
    Leitung: Dr.-Ing. Manuel Schilling, Dr.-Ing. Ludger Timmen
    Team: Dr.-Ing. Manuel Schilling, Dr.-Ing. Ludger Timmen
    Jahr: 2017
    Förderung: IfE, SFB-1128, EXC-2123 "QuantumFrontiers"
    Laufzeit: 2017-2025
    © M. Schilling

QUEST

Weltraumsensorik

  • Modellierung mit Quantensensoren gestützter Satellitenmissionen
    Dieses Projekt beschreibt den den Einsatz von Beschleunigungsmessern auf Grundlage von Atominterferometern in Schwerefeldsatellitenmissionen. Es wird sowohl der Ersatz klassischer elektrostatischer Beschleunigungsmesser durch Quantensensoren als auch die Kombination beider Sensorarten in einem Hybridsystem untersucht.
    Leitung: Prof. Dr.-Ing. Jürgen Müller
    Team: M.Sc. Annike Knabe, Dr.-Ing. Hu Wu, Dr.-Ing. Manuel Schilling
    Jahr: 2019
    Förderung: DLR
    © Schilling
  • Interactions of Low-orbiting Satellites with the Surrounding Ionosphere and Thermosphere Part II (INSIGHT II)
    In unserem Institut stellen wir reduzierte und kalibrierte Schwarm-Beschleunigungssensoren für die ESA Swarm-Datenverarbeitungskette zur Verfügung, die die Grundlage für die Bestimmung der thermosphärischen Dichte bilden. Dazu gehört auch die Kalibrierung des Beschleunigungssensors durch präzise Bahnbestimmung von Schwarm-Satelliten.
    Leitung: Prof. Dr.-Ing. Jakob Flury
    Team: Dr.-Ing. Akbar Shabanloui
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 2018-2021
  • Swarm ESL/DISC: Support to accelerometer data analysis and processing
    Leitung: Prof. Dr.-Ing. Jakob Flury
    Team: Dr.-Ing. Sergiy Svitlov, Dr.-Ing. Akbar Shabanloui
    Jahr: 2016
    Förderung: ESA (DTU Space)
    Laufzeit: 2016-2020