Laufende Forschungsprojekte

  • Interferometrische Glasfaserverbindungen (SFB 1464, A05)
    Um das chronometrische Nivellement als Routinewerkzeug für die Geodäsie zu etablieren, sind Forschung und Entwicklungen für hochpräzise Frequenzübertragung in den Bereichen Interferometrische Glasfaserverbindungen (Interferometric Fibre Links, IFLs) und Globales Navigationssatellitensystem - Frequenztransfer (GNSS-FT) erforderlich. Die Entwicklung von feldtauglichen IFLs-Geräten, ultrapräziser GNSS-FT und deren Einsatz für chronometrische Nivellements sind neue Forschungs- und Entwicklungsgebiete, die viele Anwendungen von geodätischem Interesse eröffnen werden. Unser Ziel ist es, eine chronometrische Nivellement-Kampagne zwischen Insel und Festland unter Verwendung von IFL und GNSS-FT sowie der in Teilprojekt A04 entwickelten transportablen optischen Uhr zu realisieren.
    Leitung: Prof. Dr.-Ing. Steffen Schön, Dr. Gesine Grosche
    Team: Dr. Alexander Kuhl, Dr. Thomas Waterholter, Ahmed Elmaghraby
    Jahr: 2021
  • Korrektur von GNSS-Mehrwegeeffekten für die zuverlässige Eigenlokalisierung von hochautomatisierten Fahrzeugen in innerstädtischen Bereichen (KOMET)
    Die im Fahrzeugbereich verwendete Code-Range (Codemessung) liefert aufgrund ihres hohen Messrauschens nicht die notwendige Auflösung der Ortung. Aufgrund der komplexen GNSS-Signalausbreitung (Signalabschattung, Mehrwegeeffekte) in urbanen Umgebungen ist die Bestimmung einer genauen und robusten Positionslösung eine besondere Herausforderung - z.B. bei der Ortung in engen Straßenschluchten. Das geplante Forschungsvorhaben fokussiert sich daher auf die Entwicklung und Anwendung innovativer Korrekturverfahren zur Reduktion auftretender Mehrwegeeffekte, um die trägerphasenbasierte GNSS-Ortung zu verbessern.
    Leitung: Prof. Dr.-Ing. Steffen Schön, Dr.-Ing. Tobias Kersten
    Team: Dr.-Ing. Tobias Kersten, M.Sc. Fabian Ruwisch
    Jahr: 2020
    Förderung: BMWi / TÜV Rheinland Consulting GmbH
    © Ch. Skupin (Bosch)
  • Bounding and propagating observation uncertainty with interval mathematic (GRK 2159)
    Intervals (Jaulin et al 2001) can be seen as a natural way to bound observation uncertainty in navigation systems such as GPS, IMU or optical sensors like LIDAR, since they are in principle free of any assumption about probability distributions and can thus describe adequately remaining systematic effects (Schön 2016, Schön and Kutterer 2006). In this project, we intent to experimentally investigate in more details the actual size of observation intervals.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Jingyao Su, M.Sc.
    Jahr: 2020
    Förderung: DFG
  • FIRST: Fingerprinting, Integrity Monitoring and Receiver Signal Processing Using Miniature Atomic Clock Technology
    Um die Performance der Bestimmung von Position, Geschwindigkeit und Zeit mittels GNSS-Messungen zu verbessern, werden heute häufig Chip Scale Atomic Clocks (CSACs) genutzt, welche dem GNSS-Empfänger ein hochstabiles Frequenzsignal zur Verfügung stellen. Die Verbesserung der Navigationslösung erfolgt bisher allerdings ausschließlich algorithmisch. In diesem Vorhaben soll nun der Einfluss von der Empfängeruhr auf die Qualität der Signalverarbeitung in einem Software-Empfänger untersucht werden, indem die internen Verarbeitungsschritte an die hohe Frequenzstabilität des CSAC-Signals angepasst werden. Zusätzlich soll die Machbarkeit des Fingerprintings mit hochstabilen Atomuhren unter verschiedenen dynamischen Bedingungen untersucht und zusätzlich Integritätsmaße für den GNSS-basierten Zeittransfer entwickelt werden.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Dennis Kulemann, M. Sc., Qianwen Lin, M. Sc.
    Jahr: 2020
    Förderung: Bundesministerium für Wirtschaft und Energie (BMWi)
  • Collaborative Navigation for Smart Cities (GRK 2159)
    Global Navigation Satellite Systems (GNSS) is the only navigation sensor that provides absolute positioning. However, urban areas form the most challenging environment for GNSS to achieve a reliable position. Because of the reduced satellite visibility and disturbed signal propagation like diffraction and multipath, the resulting position has a reduced accuracy and availability. The overall research objective of this project is to reduce these shortcomings through collaboration. Therefore, similarity of multipath at different locations within streets will be studied.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Lucy Icking, M.Sc.
    Jahr: 2019
    Förderung: DFG
  • QGyro: Quantum Optics Inertial Sensor Research
    In diesem Vorhaben sollen hochgenaue Quanteninertialsensoren zur Stützung konventioneller Inertialnavigationssensoren entwickelt und getestet werden, die dann in verschiedenen weiteren Entwicklungsstufen bis zu 6 Messfreiheitsgraden ausgebaut und für eine autonome Navigation eingesetzt werden können.
    Leitung: Prof. Dr.-Ing. Schön
    Team: M.Sc. Benjamin Tennstedt, Dr.-Ing. Tobias Kersten
    Jahr: 2019
    Förderung: BMWi | Deutsches Zentrum für Luft und Raumfahrt (DLR) - 50RK1957
    Laufzeit: 2019 - 2022
  • Entwicklung und Test einer für Quantensensoren adäquaten Berechnungsstrategie für die Inertialnavigation
    Durch neue Messprinzipien haben Quantensensoren signifikante Verbesserungen in Stabilität und Genauigkeit bei der Erfassung von inertialen Einflüssen erzielt. Anstelle mechanischer Federsysteme in Beschleunigungsmessern oder durch einen Faserkreisel oder Ringresonator umschlossene Flächen in Lasergyroskopen sind in Quantensensoren die Skalenfaktoren an atomare Übergänge gebunden und auf Frequenzmessungen zurückzuführen. Die alternativen Messverfahren und hohen Sensitivitäten der Quantensensoren erfordern eine adäquate Auswertestrategie, die sich von der klassischen Herangehensweise der Inertialnavigation unterscheidet. Ziel der Studie ist die Entwicklung und der Test einer entsprechenden Berechnungsstrategie, die gezielt die Anwendbarkeit der einzelnen Berechnungsschritte bei der Quanteninertialnavigation überprüft, und geeignete Alternativen, beispielsweise bei der Integrationsdynamik oder geschätzten Systemparametern, vorschlägt.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Benjamin Tennstedt
    Jahr: 2018
    Förderung: DLR
  • Integrity Monitoring for Network RTK Systems
    From the advent of the satellite positioning techniques, civil users have always been trying to find a way to have more accurate and precise coordinates of their position. Differential concepts, from early days of GPS, have been considered. Applying the RTCM format, made the transmission of corrections possible from reference stations to the users. At first stage the corrections were casted to the users from one single station, which is called single RTK (Real Time Kinematic). This method is limited in some ways; degrading by increasing distance from CORS (Continuously Operating Reference Station), needed same signals at reference and rover and remaining the reference station errors. For compensating these shortages, the Network RTK concept appeared. In NRTK the corrections are produced using a network (at least three) of reference stations. The concept of Precise Point Positioning (PPP) is currently associated with global networks. Precise orbit and clock solutions are used to enable absolute positioning of a single receiver. However, it is restricted in ambiguity resolution, in convergence time and in accuracy. Precise point positioning based on RTK networks (PPP-RTK) overcomes these limitations and gives centimeter-accuracy in a few seconds.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Ali Karimidoona, M. Sc.
    Jahr: 2018
    Förderung: DAAD
  • VeNaDU 2: Verbesserte Positionierung und Navigation durch Uhrmodellierung
    Dieses Folgeprojekt zum Vorhaben VeNaDU untersucht zum einen den Performance-Gewinn durch den Einsatz hochstabiler Atomuhren in kinematischem PPP. Zum anderen soll eine Hardware-technische Umsetzung einer miniaturisierten Atomuhr in einem Einfrequenz-Empfänger realisiert werden.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Dr.-Ing. Thomas Krawinkel, Dr. Ankit Jain
    Jahr: 2017
  • Improved GPS data analysis for the Swarm constellation
    New concepts for GPS observation data quality assessment and positioning should be developed and evaluated taking advantage of variable geometries in the Swarm constellation.
    Leitung: Prof. Dr.-Ing. Steffen Schön
    Team: Dipl.-Ing. Le Ren
    Jahr: 2015
    Förderung: DFG