Current Research Projects

  • Correction of GNSS multipath effects for reliable autonomous localisation of highly automated vehicles in metropolitan areas (KOMET)
    The code range (code measurement) used in automotive applications often cannot provide the required resolution of the location due to the high measurement noise. The complex GNSS signal propagation (signal shading, multipath effects) in urban environments makes the determination of an accurate and robust positioning solution a particularly challenging task - e.g. for positioning in narrow street canyons. The research project aims to develop and implement innovative correction methods to reduce multipath effects in order to improve carrier phase-based GNSS positioning.
    Leaders: Prof. Dr.-Ing. Steffen Schön, Dr.-Ing. Tobias Kersten
    Team: Dr.-Ing. Tobias Kersten, M.Sc. Fabian Ruwisch
    Year: 2020
    Sponsors: BMWi / TÜV Rheinland Consulting GmbH
    © Ch. Skupin (Bosch)
  • Bounding and propagating observation uncertainty with interval mathematic (GRK 2159)
    Intervals (Jaulin et al 2001) can be seen as a natural way to bound observation uncertainty in navigation systems such as GPS, IMU or optical sensors like LIDAR, since they are in principle free of any assumption about probability distributions and can thus describe adequately remaining systematic effects (Schön 2016, Schön and Kutterer 2006). In this project, we intent to experimentally investigate in more details the actual size of observation intervals.
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: Jingyao Su, M.Sc.
    Year: 2020
    Sponsors: DFG
  • Collaborative Navigation for Smart Cities (GRK 2159)
    Global Navigation Satellite Systems (GNSS) is the only navigation sensor that provides absolute positioning. However, urban areas form the most challenging environment for GNSS to achieve a reliable position. Because of the reduced satellite visibility and disturbed signal propagation like diffraction and multipath, the resulting position has a reduced accuracy and availability. The overall research objective of this project is to reduce these shortcomings through collaboration. Therefore, similarity of multipath at different locations within streets will be studied.
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: Lucy Icking, M.Sc.
    Year: 2019
    Sponsors: DFG
  • Entwicklung und Test einer für Quantensensoren adäquaten Berechnungsstrategie für die Inertialnavigation
    Durch neue Messprinzipien haben Quantensensoren signifikante Verbesserungen in Stabilität und Genauigkeit bei der Erfassung von inertialen Einflüssen erzielt. Anstelle mechanischer Federsysteme in Beschleunigungsmessern oder durch einen Faserkreisel oder Ringresonator umschlossene Flächen in Lasergyroskopen sind in Quantensensoren die Skalenfaktoren an atomare Übergänge gebunden und auf Frequenzmessungen zurückzuführen. Die alternativen Messverfahren und hohen Sensitivitäten der Quantensensoren erfordern eine adäquate Auswertestrategie, die sich von der klassischen Herangehensweise der Inertialnavigation unterscheidet. Ziel der Studie ist die Entwicklung und der Test einer entsprechenden Berechnungsstrategie, die gezielt die Anwendbarkeit der einzelnen Berechnungsschritte bei der Quanteninertialnavigation überprüft, und geeignete Alternativen, beispielsweise bei der Integrationsdynamik oder geschätzten Systemparametern, vorschlägt.
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Benjamin Tennstedt
    Year: 2018
    Sponsors: DLR
  • VeNaDU 2: Verbesserte Positionierung und Navigation durch Uhrmodellierung
    Dieses Folgeprojekt zum Vorhaben VeNaDU untersucht zum einen den Performance-Gewinn durch den Ein satz hochstabiler Atomuhren in kinematischem PPP. Zum anderen soll eine Hardware-technische Umsetzung einer miniaturisierten Atomuhr in einem Einfrequenz-Empfänger realisiert werden.
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Thomas Krawinkel, Dr. Ankit Jain
    Year: 2017
  • Alternative Integrity Measures Based on Interval Mathematics (GRK 2159, Topic 1)
    This project deals with the development of alternative integrity measures based on interval mathematic, fuzzy theory and imprecise random variables.
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Hani Dbouk
    Year: 2016
    Sponsors: DFG
  • Optimal Collaborative Positioning (GRK 2159, Topic 4)
    Collaborative Positioning (CP) is a promising technique in which a group of dynamic nodes (pedestrians, vehicles, etc.) equipped with different (time synchronized) sensors can increase the quality of the Positioning, Navigation and Timing (PNT) information by exchanging navigation information as well as performing measurements between nodes or to elements of the environment (urban furniture, buildings, etc.).
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: M.Sc. Nicolas Garcia Fernandez
    Year: 2016
    Sponsors: DFG
  • Improved GPS data analysis for the Swarm constellation
    New concepts for GPS observation data quality assessment and positioning should be developed and evaluated taking advantage of variable geometries in the Swarm constellation.
    Leaders: Prof. Dr.-Ing. Steffen Schön
    Team: Dipl.-Ing. Le Ren
    Year: 2015
    Sponsors: DFG